Advertisement

Control of Neuronal Gene Transcription and Behavior by the Epigenetic Suppressor Complex G9a/GLP

  • Anne Schaefer
Chapter
Part of the Research and Perspectives in Neurosciences book series (NEUROSCIENCE)

Abstract

Epigenetic control of cellular phenotypes is governed by numerous enzymes that contribute to post-synthetic modifications of DNA and associated histone proteins. These modifications facilitate the assembly of protein complexes that regulate gene expression in a highly orchestrated fashion. The importance of epigenetic regulators in brain development and function is supported by the strong association between mental retardation in humans and the aberrant structure or expression of various epigenetic regulators

Using conditional mutagenesis in mice, we found that the histone methyltransferase complex G9a/GLP (Ehmt1/Ehmt2 in humans), which controls gene expression via di-methylation of histone 3 on lysine 9 (H3K9me2), regulates cognition and complex behavior in mice. Postnatal neuron-specific loss of G9a/GLP in mice recapitulates key symptoms of a severe mental retardation syndrome in humans that is associated with the reduced expression of GLP/Ehmt1. In an attempt to unravel the mechanism of G9a/GLP regulated cognition and behavior, we will discuss the nature of gene expression changes associated with the loss of G9a/GLP.

Keywords

Mental Retardation Syndrome Methyltransferase Complex Large Ribosomal Subunit Protein Translate Ribosome Affinity Purification Postnatal Forebrain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I would like to thank Paul Greengard and Alexander Tarakhovsky for their support and discussions and Shrihari Sampath, Myriam Heiman, James Surmeier, and Nathaniel Heintz for their contribution to the work. The work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the National Institute on Drug Abuse (NIDA).

References

  1. Balemans MC, Huibers MM, Eikelenboom NW, Kuipers AJ, van Summeren RC, Pijpers MM, Tachibana M, Shinkai Y, van Bokhoven H, Van der Zee CE (2010) Reduced exploration, increased anxiety, and altered social behavior: autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behav Brain Res 208:47–55PubMedCrossRefGoogle Scholar
  2. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412PubMedCrossRefGoogle Scholar
  3. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213PubMedCrossRefGoogle Scholar
  4. Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P (2008) Decoding the epigenetic language of neuronal plasticity. Neuron 60:961–974PubMedCrossRefGoogle Scholar
  5. Chen D, Garg A (1999) Monogenic disorders of obesity and body fat distribution. J Lipid Res 40:1735–1746PubMedGoogle Scholar
  6. Chen H, Ke Q, Kluz T, Yan Y, Costa M (2006a) Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol 26:3728–3737PubMedCrossRefGoogle Scholar
  7. Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M (2006b) Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res 66:9009–9016PubMedCrossRefGoogle Scholar
  8. Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271PubMedCrossRefGoogle Scholar
  9. Cormier-Daire V, Molinari F, Rio M, Raoul O, de Blois MC, Romana S, Vekemans M, Munnich A, Colleaux L (2003) Cryptic terminal deletion of chromosome 9q34: a novel cause of syndromic obesity in childhood? J Med Genet 40:300–303PubMedCrossRefGoogle Scholar
  10. Crosio C, Heitz E, Allis CD, Borrelli E, Sassone-Corsi P (2003) Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci 116:4905–4914PubMedCrossRefGoogle Scholar
  11. Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, Gong S, Greengard P, Heintz N (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749–762PubMedCrossRefGoogle Scholar
  12. Gong S, Doughty M, HarbaughCR CA, Hatten ME, Heintz N, Gerfen CR (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27:9817–9823PubMedCrossRefGoogle Scholar
  13. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suarez-Farinas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135:738–748PubMedCrossRefGoogle Scholar
  14. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080PubMedCrossRefGoogle Scholar
  15. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038PubMedCrossRefGoogle Scholar
  16. Ke Q, Davidson T, Chen H, Kluz T, Costa M (2006) Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis 27:1481–1488PubMedCrossRefGoogle Scholar
  17. Kleefstra T, Smidt M, Banning MJ, Oudakker AR, Van Esch H, de Brouwer AP, Nillesen W, Sistermans EA, Hamel BC, de Bruijn D, Fryns JP, Yntema HG, Brunner HG, de Vries BB, van Bokhoven H (2005) Disruption of the gene euchromatin histone methyl transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet 42:299–306PubMedCrossRefGoogle Scholar
  18. Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen W, Magee A, Genevieve D, Cormier-Daire V, van Esch H, Fryns JP, Hamel BC, Sistermans EA, de Vries BB, van Bokhoven H (2006) Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet 79:370–377PubMedCrossRefGoogle Scholar
  19. Kleefstra T, van Zelst-Stams WA, Nillesen WM, Cormier-Daire V, Houge G, Foulds N, van Dooren M, Willemsen MH, Pfundt R, Turner A, Wilson M, McGaughran J, Rauch A, Zenker M, Adam M, Innes M, Davies C, Gonzalez-Meneses Lopez A, Casalone R, Weber A, Brueton LA, Delicado Navarro A, Palomares Bralo M, Venselaar H, Stegmann SP, Yntema HG, van Bokhoven H, Brunner HG (2009) Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet 46:598–606PubMedCrossRefGoogle Scholar
  20. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705PubMedCrossRefGoogle Scholar
  21. Lehnertz B, Northrop JP, Antignano F, Burrows K, Hadidi S, Mullaly SC, Rossi FM, Zaph C (2010) Activating and inhibitory functions for the histone lysine methyltransferase G9a in T helper cell differentiation and function. J Exp Med 207:915–922PubMedCrossRefGoogle Scholar
  22. Ooi L, Wood IC (2008) Regulation of gene expression in the nervous system. Biochem J 414:327–341PubMedCrossRefGoogle Scholar
  23. Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12:1577–1589PubMedCrossRefGoogle Scholar
  24. Qiu Z, Ghosh A (2008) A brief history of neuronal gene expression: regulatory mechanisms and cellular consequences. Neuron 60:449–455PubMedCrossRefGoogle Scholar
  25. Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12:1591–1598PubMedCrossRefGoogle Scholar
  26. Sampath SC, Marazzi I, Yap KL, Sampath SC, Krutchinsky AN, Mecklenbrauker I, Viale A, Rudensky E, Zhou MM, Chait BT, Tarakhovsky A (2007) Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol Cell 27:596–608PubMedCrossRefGoogle Scholar
  27. Schaefer A, Sampath S, Intrator A, Min A, Gertler T, Surmeier DJ, Tarakhovsky A, Greengard P (2009) Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 64:678–691PubMedCrossRefGoogle Scholar
  28. Shirato H, Ogawa S, Nakajima K, Inagawa M, Kojima M, Tachibana M, Shinkai Y, Takeuchi T (2009) A jumonji (Jarid2) protein complex represses cyclin D1 expression by methylation of histone H3-K9. J Biol Chem 284:733–739PubMedCrossRefGoogle Scholar
  29. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45PubMedCrossRefGoogle Scholar
  30. Tachibana M, Sugimoto K, Fukushima T, Shinkai Y (2001) Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 276:25309–25317PubMedCrossRefGoogle Scholar
  31. Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16:1779–1791PubMedCrossRefGoogle Scholar
  32. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19:815–826PubMedCrossRefGoogle Scholar
  33. Thomas LR, Miyashita H, Cobb RM, Pierce S, Tachibana M, Hobeika E, Reth M, Shinkai Y, Oltz EM (2008) Functional analysis of histone methyltransferase g9a in B and T lymphocytes. J Immunol 181:485–493PubMedGoogle Scholar
  34. Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41:246–250PubMedCrossRefGoogle Scholar
  35. Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:483–495PubMedCrossRefGoogle Scholar
  36. Yatsenko SA, Cheung SW, Scott DA, Nowaczyk MJ, Tarnopolsky M, Naidu S, Bibat G, Patel A, Leroy JG, Scaglia F, Stankiewicz P, Lupski JR (2005) Deletion 9q343 syndrome: genotype-phenotype correlations and an extended deletion in a patient with features of Opitz C trigonocephaly. J Med Genet 42:328–335PubMedCrossRefGoogle Scholar
  37. Zhang Z, Hofmann C, Casanova E, Schutz G, Lutz B (2004) Generation of a conditional allele of the CBP gene in mouse. Genesis 40:82–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratory of Molecular and Cellular NeuroscienceThe Rockefeller UniversityNew YorkUSA
  2. 2.Laboratory of Brain Epigenetics, Friedman Brain InstituteMount Sinai School of MedicineNew YorkUSA

Personalised recommendations