Nucleosome Remodelling and Epigenome Diversification

  • Peter B. Becker
Part of the Research and Perspectives in Neurosciences book series (NEUROSCIENCE)


Nucleosome remodelling factors utilize chemical energy to disrupt histone-DNA interactions in nucleosomes. They catalyze a variety of structural changes ranging from complete nucleosome disassembly and the exchange of histone variants to the sliding of intact histone octamers along DNA. The essential involvement of some remodelling complexes in neuronal transcription programs is due to lineage-specific subunits that assure the selective targeting to neuronal promoters. In addition, nucleosome remodelers may contribute to the faithful silencing of competing transcription programs by maintaining the integrity and regularity of the nucleosomal fiber as a prerequisite for higher order chromatin organization.


Gene Expression Program Linker Histone Histone Chaperone Postmitotic Neuron Nucleosome Remodeler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research on nucleosome remodelling factors CHRAC and ACF in the author’s laboratory is funded by the Deutsche Forschungsgemeinschaft (DFG).


  1. Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang CP, Zhao Y, Swigut T, Wysocka J (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463:958–962PubMedCrossRefGoogle Scholar
  2. Bao Y, Shen X (2011) SnapShot: chromatin remodeling: INO80 and SWR1. Cell 144:158–158 e152PubMedCrossRefGoogle Scholar
  3. Becker PB (2002) Nucleosome sliding: facts and fiction. EMBO J 21:4749–4753PubMedCrossRefGoogle Scholar
  4. Becker PB, Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71:247–273PubMedCrossRefGoogle Scholar
  5. Belikov S, Gelius B, Almouzni G, Wrange O (2000) Hormone activation induces nucleosome positioning in vivo. EMBO J 19:1023–1033PubMedCrossRefGoogle Scholar
  6. Brown E, Malakar S, Krebs JE (2007) How many remodelers does it take to make a brain? Diverse and cooperative roles of ATP-dependent chromatin-remodeling complexes in development. Biochem Cell Biol 85:444–462PubMedCrossRefGoogle Scholar
  7. Cairns BR (2007) Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol 14:989–996PubMedCrossRefGoogle Scholar
  8. Cairns BR (2009) The logic of chromatin architecture and remodelling at promoters. Nature 461:193–198PubMedCrossRefGoogle Scholar
  9. Chaban Y, Ezeokonkwo C, Chung WH, Zhang F, Kornberg RD, Maier-Davis B, Lorch Y, Asturias FJ (2008) Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Nat Struct Mol Biol 15:1272–1277PubMedCrossRefGoogle Scholar
  10. Chioda M, Becker PB (2010) Soft skills turned into hard facts: nucleosome remodelling at developmental switches. Heredity 105:71–79PubMedCrossRefGoogle Scholar
  11. Chioda M, Vengadasalam S, Kremmer E, Eberharter A, Becker PB (2010) Developmental role for ACF1-containing nucleosome remodellers in chromatin organisation. Development 137:3513–3522PubMedCrossRefGoogle Scholar
  12. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304PubMedCrossRefGoogle Scholar
  13. de la Serna IL, Ohkawa Y, Imbalzano AN (2006) Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7:461–473PubMedCrossRefGoogle Scholar
  14. Eberharter A, Ferreira R, Becker P (2005) Dynamic chromatin: concerted nucleosome remodelling and acetylation. Biol Chem 386:745–751PubMedCrossRefGoogle Scholar
  15. Engeholm M, de Jager M, Flaus A, Brenk R, van Noort J, Owen-Hughes T (2009) Nucleosomes can invade DNA territories occupied by their neighbors. Nat Struct Mol Biol 16:151–158PubMedCrossRefGoogle Scholar
  16. Flaus A, Martin DM, Barton GJ, Owen-Hughes T (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34:2887–2905PubMedCrossRefGoogle Scholar
  17. Francis NJ, Saurin AJ, Shao Z, Kingston RE (2001) Reconstitution of a functional core polycomb repressive complex. Mol Cell 8:545–556PubMedCrossRefGoogle Scholar
  18. Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT (2004) Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev 18:170–183PubMedCrossRefGoogle Scholar
  19. Gangaraju VK, Bartholomew B (2007) Mechanisms of ATP dependent chromatin remodeling. Mutat Res 618:3–17PubMedCrossRefGoogle Scholar
  20. Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A, Ramalho-Santos J, McManus MT, Plath K, Meshorer E, Ramalho-Santos M (2009) Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460:863–868PubMedGoogle Scholar
  21. Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21:396–420PubMedCrossRefGoogle Scholar
  22. Hassan AH, Neely KE, Workman JL (2001) Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104:817–827PubMedCrossRefGoogle Scholar
  23. Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463:474–484PubMedCrossRefGoogle Scholar
  24. Ho L, Jothi R, Ronan JL, Cui K, Zhao K, Crabtree GR (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci U S A 106:5187–5191PubMedCrossRefGoogle Scholar
  25. Kasten MM, Clapier CR, Cairns BR (2011) SnapShot: chromatin remodeling: SWI/SNF. Cell 144(310):e311Google Scholar
  26. Kazantseva A, Sepp M, Kazantseva J, Sadam H, Pruunsild P, Timmusk T, Neuman T, Palm K (2009) N-terminally truncated BAF57 isoforms contribute to the diversity of SWI/SNF complexes in neurons. J Neurochem 109:807–818PubMedCrossRefGoogle Scholar
  27. Kim JH, Saraf A, Florens L, Washburn M, Workman JL (2010) Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. Genes Dev 24:2766–2771PubMedCrossRefGoogle Scholar
  28. Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, Vershilova E, Pirrotta V, Kadonaga JT, Lusser A, Fyodorov DV (2007) CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317:1087–1090PubMedCrossRefGoogle Scholar
  29. Korber P, Becker PB (2011) Nucleosome dynamics and epigenetic stability. Essays Biochem 48:63–74CrossRefGoogle Scholar
  30. Lamba DA, Hayes S, Karl MO, Reh T (2008) Baf60c is a component of the neural progenitor-specific BAF complex in developing retina. Dev Dyn 237:3016–3023PubMedCrossRefGoogle Scholar
  31. Längst G, Becker PB (2001) Nucleosome mobilization and positioning by ISWI-containing chromatin remodeling factors. J Cell Sci 114:2561–2568PubMedGoogle Scholar
  32. Lantermann AB, Straub T, Stralfors A, Yuan GC, Ekwall K, Korber P (2010) Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17:251–257PubMedCrossRefGoogle Scholar
  33. Lavigne M, Eskeland R, Azebi S, Saint-Andre V, Jang SM, Batsche E, Fan HY, Kingston RE, Imhof A, Muchardt C (2009) Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet 5:e1000769PubMedCrossRefGoogle Scholar
  34. Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201–215PubMedCrossRefGoogle Scholar
  35. Melcer S, Meshorer E (2010) Chromatin plasticity in pluripotent cells. Essays Biochem 48:245–262PubMedCrossRefGoogle Scholar
  36. Mohrmann L, Langenberg K, Krijgsveld J, Kal AJ, Heck AJ, Verrijzer CP (2004) Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes. Mol Cell Biol 24:3077–3088PubMedCrossRefGoogle Scholar
  37. Moshkin YM, Mohrmann L, van Ijcken WF, Verrijzer CP (2007) Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. Mol Cell Biol 27:651–661PubMedCrossRefGoogle Scholar
  38. Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487PubMedCrossRefGoogle Scholar
  39. Olave I, Wang W, Xue Y, Kuo A, Crabtree GR (2002) Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev 16:2509–2517PubMedCrossRefGoogle Scholar
  40. Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, Purcell TJ, Cooke R, Cheng Y, Narlikar GJ (2009) The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462:1016–1021PubMedCrossRefGoogle Scholar
  41. Seo S, Herr A, Lim JW, Richardson GA, Richardson H, Kroll KL (2005) Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev 19:1723–1734PubMedCrossRefGoogle Scholar
  42. Sims JK, Wade PA (2011) SnapShot: chromatin remodeling: CHD. Cell 144(626–626):e621Google Scholar
  43. Sugiyama T, Cam HP, Sugiyama R, Noma K, Zofall M, Kobayashi R, Grewal SI (2007) SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128:491–504PubMedCrossRefGoogle Scholar
  44. Varga-Weisz PD, Becker PB (2006) Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Curr Opin Genet Dev 16:151–156PubMedCrossRefGoogle Scholar
  45. Vicent GP, Nacht AS, Font-Mateu J, Castellano G, Gaveglia L, Ballare C, Beato M (2011) Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation. Genes Dev 2025:845–862CrossRefGoogle Scholar
  46. Workman JL (2006) Nucleosome displacement in transcription. Genes Dev 20:2009–2017PubMedCrossRefGoogle Scholar
  47. Wu JI, Lessard J, Olave IA, Qiu Z, Ghosh A, Graef IA, Crabtree GR (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56:94–108PubMedCrossRefGoogle Scholar
  48. Wu JI, Lessard J, Crabtree GR (2009) Understanding the words of chromatin regulation. Cell 136:200–206PubMedCrossRefGoogle Scholar
  49. Yadon AN, Tsukiyama T (2011) SnapShot: chromatin remodeling: ISWI. Cell 144:453–453 e451PubMedCrossRefGoogle Scholar
  50. Yoo AS, Crabtree GR (2009) ATP-dependent chromatin remodeling in neural development. Curr Opin Neurobiol 19:120–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Adolf-Butenandt-Institute and Center of Integrated Protein ScienceLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations