Advertisement

Applications and Examples

  • Frank A. Coutelieris
  • J. M. P. Q. Delgado
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 20)

Abstract

This chapter presents several applications and examples of the theories and analytical/numerical aspects discussed in the previous chapters. The solutions of these problems are useful in the analysis of a variety of physical situations, in several technological fields such as chemical engineering, civil engineering, and alternative energy. Furthermore, some more generic applications related to interdisciplinary engineering aspects (food and pharmaceutical development, petroleum engineering, etc.) are presented briefly.

Keywords

Porous Medium Fuel Cell Droplet Size Mass Transfer Coefficient Peclet Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Achenbach, E., Reinsche, E.: Methane/steam reforming kinetics for solid oxide fuel cells. J. Power Sources 52, 238–299 (1994)CrossRefGoogle Scholar
  2. 2.
    Adler, P.M., Jacquin, C.J., Quiblier, J.A.: Flow in simulated porous media. Int. J. Multiphase Flow 16, 691–712 (1990)CrossRefGoogle Scholar
  3. 3.
    Agterof, W.G.M., Vaessen, G.E.J., Haagh, G.A.A.V., Klahn, J.K., Janssen, J.J.M.: Prediction of emulsion particle sizes using a computational fluid dynamics approach. Colloid Surf. B 31, 141–148 (2003)CrossRefGoogle Scholar
  4. 4.
    Aguiar, P., Adjimana, C.S., Brandona, N.P.: Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance. J. Power Sources 138, 120–136 (2004)CrossRefGoogle Scholar
  5. 5.
    Ahmadi, A., Quintard, M., Whitaker, S.: Transport in chemically and mechanically heterogeneous porous media V: two-equation model for solute transport with adsorption. Adv. Water Resour. 22, 59–86 (1998)CrossRefGoogle Scholar
  6. 6.
    Ahmadi, A., Aigueperse, A., Quintard, M.: Calculation of the effective properties describing active dispersion in porous media: from simple to complex porous media. Adv. Water Resour. 24, 423–438 (2001)CrossRefGoogle Scholar
  7. 7.
    Ahmed, K., Foger, K.: Kinetics of internal steam reforming of ethane on Ni/YSZ based anodes for solid oxide fuel cells. Catal. Today 63, 479–487 (2000)CrossRefGoogle Scholar
  8. 8.
    Alves, M.A., Delgado, J.M.P.Q., Guedes de Carvalho, J.R.F.: Mass transfer from cylinders and plane surfaces buried in packed beds in alignment with the flow direction. Chem. Eng. Sci. 61, 1174–1183 (2006)CrossRefGoogle Scholar
  9. 9.
    Bekri, S., Thovert, J.F., Adler, P.M.: Dissolution and deposition in fractures. Eng. Geol. 48, 283–308 (1997)CrossRefGoogle Scholar
  10. 10.
    Bekri, S., Adler, P.M.: Dispersion in multiphase flow through porous media. Int. J. Multiphase Flow 28, 665–697 (2002)CrossRefGoogle Scholar
  11. 11.
    Bird, R.B., Stewart, W., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (1960)Google Scholar
  12. 12.
    Bomberg, M.: Moisture flow through porous building materials. In: Report no. 52, Division of Building Technology, Lund Institute of Technology, Lund, Sweden (1974)Google Scholar
  13. 13.
    Bravo, M.C., Araujoc, M., Lago, M.: Pore network modeling of two-phase flow in a liquid-(disconnected) gas system. Physica A 375, 1–17 (2007)CrossRefGoogle Scholar
  14. 14.
    Carbonell, R.G., Whitaker, S.: Heat and mass transfer in porous media. In: Bear, J., Carpacioglu, M.Y. (eds.) Fundamentals of Transport Phenomena in Porous Media. Martinus Nijhoff Publ, Dordrecht (1984)Google Scholar
  15. 15.
    Chesters, A.K.: The modeling of coalescence processes in fluid-liquid dispersions. Chem. Eng. Res. Des. 69, 259–270 (1991)Google Scholar
  16. 16.
    Coelho, M.A.N., Guedes de Carvalho, J.R.F.: Transverse dispersion in granular beds: Part II–mass transfer from large spheres immersed in fixed or fluidised beds of small inert particles. Chem. Eng. Res. Des. 66, 178–189 (1988)Google Scholar
  17. 17.
    Colombert, R.: L’Humidité des bâtiments anciens; causes et effets; Diagnostic et remèdes, Editions du Moniteur, Paris (1975)Google Scholar
  18. 18.
    Costa-Nunes, O., Gorte, R.J., Vohs, J.M.: Comparison of the performance of Cu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with H2, CO and syngas. J. Power Sources 141, 241–249 (2005)CrossRefGoogle Scholar
  19. 19.
    Costamagna, P., Magistri, L., Massardo, A.F.: Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine. J. Power Sources 96, 352–368 (2001)CrossRefGoogle Scholar
  20. 20.
    Coutelieris, F.A., Kainourgiakis, M.E., Stubos, A.K.: Low Peclet mass transport in assemblages of spherical particles for two different adsorption mechanisms. J. Colloid Interface Sci. 264, 20–29 (2003)CrossRefGoogle Scholar
  21. 21.
    Crank, J.: The mathematics of diffusion, 2nd edn. Oxford University Press, UK (1975)Google Scholar
  22. 22.
    Dagan, G., Lessoff, S.: Solute transport in heterogeneous formations of bimodal conductivity distribution: 1. Theory. Water Resour. Res. 37, 465–472 (2001)CrossRefGoogle Scholar
  23. 23.
    Dullien, F.A.: Porous Media: Fluid Transport and Pore Structure. Academic Press, California (1979)Google Scholar
  24. 24.
    Fenwick, D.H., Blunt, M.: Three-dimensional modeling of three phase imbibition and drainage. Adv. Water Resour. 21, 121–143 (1998)CrossRefGoogle Scholar
  25. 25.
    Ferguson, J.R., Fiard, J.M., Herbin, R.: Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. J. Power Sources 58, 109–122 (1996)CrossRefGoogle Scholar
  26. 26.
    Freitas, V.P., Guimarães, A.S.: Characterization of a hygro-regulated wall base ventilation system for treatment of rising damp in historical buildings. In: Proceedings of the 2nd Nordic Symposium on Building Physics, Copenhagen, Denmark, pp. 911–919 (2008)Google Scholar
  27. 27.
    Fried, J.J., Muntzer, P., Zilliox, L.: Groundwater pollution by transfer of oil-hydrocarbons. Ground Water 17, 586–594 (1979)CrossRefGoogle Scholar
  28. 28.
    Geller, J.T., Hunt, J.R.: Mass transfer from non-aqueous phase organic liquids in water-saturated porous media. Water Resour. Res. 29, 833–845 (1993)CrossRefGoogle Scholar
  29. 29.
    Gerami, S., Pooladi-Darvish, M.: Predicting gas generation by depressurization of gas hydrates where the sharp-interface assumption is not valid. J. Pet. Sci. Eng. 56, 146–164 (2007)CrossRefGoogle Scholar
  30. 30.
    Goldschmidt, M.J.V., Weijers, G.G.C., Boerefijn, R., Kuipers, J.A.M.: Discrete element modelling of fluidised bed spray granulation. Powder Technol. 138, 39–45 (2003)CrossRefGoogle Scholar
  31. 31.
    Guedes de Carvalho, J.R.F., Delgado, J.M.P.Q., Alves, M.A.: Mass transfer between flowing fluid and sphere buried in packed bed of inerts. AIChE J. 50, 65–74 (2004)CrossRefGoogle Scholar
  32. 32.
    Grace, H.P.: Dispersion phenomena in high-viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem. Eng. Commun. 14, 225–277 (1982)CrossRefGoogle Scholar
  33. 33.
    Grgicak, C.M., Green, R.G., Giorgi, J.B.: SOFC anodes for direct oxidation of hydrogen and methane fuels containing H2S. J. Power Sources 179, 317–328 (2008)CrossRefGoogle Scholar
  34. 34.
    Guimarães, A.S., Delgado, J.M.P.Q., de Freitas, V.P.: Mathematical analysis of the evaporative process of a new technological treatment of rising damp in historic buildings. Build. Environ. 45, 2414–2420 (2010)CrossRefGoogle Scholar
  35. 35.
    Gurau, V., Liu, H., Kakac, S.: Two-dimensional model for proton exchange membrane fuel cells. AIChE J. 44, 2410–2422 (1998)CrossRefGoogle Scholar
  36. 36.
    Gummerson, R.J., Hall, C., Hoff, W.D.: Water movement in porous building materials-III. A sorptivity test procedure for chemical injection damp proofing. Build. Environ. 16, 193–199 (1981)CrossRefGoogle Scholar
  37. 37.
    Gvirtzam, H., Paldor, N., Magaritz, M., Bachmat, Y.: Mass exchange between mobile freshwater and immobile saline water in the unsaturated zone. Water Resour. Res. 24, 1638–1644 (1988)CrossRefGoogle Scholar
  38. 38.
    Gwo, J.P., O’Brien, R., Jardine, P.M.: Mass transfer in structured porous media: embedding mesoscale structure and microscale hydrodynamics in a two-region model. J. Hydrol. 208, 204–222 (1998)CrossRefGoogle Scholar
  39. 39.
    Hall, C., Hoff, W.D.: Water transport in brick, stone and concrete. Taylor and Francis, New York (2002)CrossRefGoogle Scholar
  40. 40.
    Hall, C., Hoff, W.D.: Rising damp: capillary rise dynamics in walls. Proc. R. Soc. A Math. Phy. 463, 1871–1884 (2007)CrossRefGoogle Scholar
  41. 41.
    He, H., Hill, J.M.: Carbon deposition on Ni/YSZ composites exposed to humidified methane. Appl. Catal. A Gen 317, 284–292 (2007)CrossRefGoogle Scholar
  42. 42.
    Heibel, A.K., Scheenen, T.W.J., Heiszwolf, J.J., van As, H., Kapteijn, F., Moulijn, J.A.: Gas and liquid phase distribution and their effect on reactor performance in the monolith film flow reactor. Chem. Eng. Sci. 56, 5935–5944 (2001)CrossRefGoogle Scholar
  43. 43.
    Hirschenhofer, J.H., Stauffer, D.B., Engleman, R.R., Klett, M.G.: Fuel Cell Handbook, 4th edn. Business/Technology Books, Orinda (1997)Google Scholar
  44. 44.
    Holm, A., Kunzel, H.M.: Two-dimensional transient heat and moisture simulations of rising damp with WUFI-2D. In: Proceedings of the 2nd International Conference on Building Physics, Leuven, Belgium, pp. 363–3677 (2003)Google Scholar
  45. 45.
    Hunt, J.R., Sitar, N., Udell, K.S.: Non-aqueous phase liquid transport and cleanup I: analysis of mechanisms. Water Resour. Res. 24, 1247–1258 (1988)CrossRefGoogle Scholar
  46. 46.
    Inamuro, T.: Lattice Boltzman methods for viscous fluid flows and for two-phase fluid flows. Fluid Dyn. Res. 38, 641–659 (2006)CrossRefGoogle Scholar
  47. 47.
    Irvine, J.T.S., Sauvet, A.: Improved oxidation of hydrocarbons with new electrodes in high temperature fuel cells. Fuel Cells 1, 205–210 (2001)CrossRefGoogle Scholar
  48. 48.
    Jamsak, W., Assabumrungrat, S., Douglas, P.L., Laosiripojana, N., Suwanwarangkul, R., Charojrochkul, S., Croiset, E.: Performance of ethanol-fuelled solid oxide fuel cells: proton and oxygen ion conductors. Chem. Eng. J. 133, 187–194 (2007)CrossRefGoogle Scholar
  49. 49.
    Janssen, J.J.M., Boon, A., Agterof, W.G.M.: Influence of dynamic interfacial properties on droplet break-up in simple shear flow. AIChE J. 40, 1929–1939 (1994)CrossRefGoogle Scholar
  50. 50.
    Jaouen, F., Lindbergh, G., Sundholm, G.: Investigation of mass-transport limitations in the solid polymer fuel cell cathode. J. Electrochem. Soc. 149, A437–A447 (2002)CrossRefGoogle Scholar
  51. 51.
    Kainourgiakis, M.E., Kikkinides, E.S., Stubos, A.K.: Diffusion and flow in porous domains constructed using process-based and stochastic techniques. J. Porous Mat. 9, 141–154 (2002)CrossRefGoogle Scholar
  52. 52.
    Kamp, A.M., Chesters, A.K., Colin, C., Fabre, J.: Bubble coalescence in turbulent flows: a mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow. Int. J. Multiphase Flow 27, 1363–1396 (2001)CrossRefGoogle Scholar
  53. 53.
    Kay, A.L., Davies, H.N.: Calculating potential evaporation from climate model data: a source of uncertainty for hydrological climate change impacts. J. Hydrol. 358, 221–239 (2008)CrossRefGoogle Scholar
  54. 54.
    Kikkinides, E.S., Burganos, V.N.: Permeation properties of three-dimensional self-affine reconstructions of porous materials. Phys. Rev. E 62, 6906–6915 (2000)CrossRefGoogle Scholar
  55. 55.
    Kim, T., Ahn, K., Vohs, J.M., Gorte, R.J.: Deactivation of ceria-based SOFC anodes in methanol. J. Power Sources 164, 42–48 (2007)CrossRefGoogle Scholar
  56. 56.
    Kimball, B.A., Jackson, R.D., Reginato, R.J., Nakayama, F.S., Idso, S.B.: Comparison of field-measures and calculated soil-heat fluxes. Soil Sci. Soc. Am. Proc. 40, 18–25 (1976)CrossRefGoogle Scholar
  57. 57.
    Klahn, J.K., Janssen, J.J.M., Vaessen, G.E.J., de Swart, R., Agterof, W.G.M.: On the escape process during phase inversion of an emulsion. Colloid Surf. A 210, 167–181 (2002)CrossRefGoogle Scholar
  58. 58.
    Klein, J.M., Bultel, Y., Pons, M., Ozil, P.: Modeling of a solid oxide fuel cell by methane: analysis of carbon deposition. J. Fuel Cell Technol. 7, 425–434 (2007)CrossRefGoogle Scholar
  59. 59.
    Kostoglou, M., Karabelas, A.J.: Evaluation of zero order methods for simulating particle coagulation. J. Colloid Interface Sci. 163, 420–431 (1994)CrossRefGoogle Scholar
  60. 60.
    Kostoglou, M., Karabelas, A.J.: Induced pulsing in trickle beds-characteristics and attenuation of pulses. Chem. Eng. Sci. 60, 6584–6595 (2005)CrossRefGoogle Scholar
  61. 61.
    Kunzel, H.M.: Simultaneous heat and moisture transport in building components; one and two dimensional calculation using simple parameters. Dissertaion, University of Stuttgart (1995)Google Scholar
  62. 62.
    Lam, A.C., Schechter, R.S., Wade, W.H.: Mobilization of residual oil under equilibrium and non-equilibrium conditions. Soc. Petrol. Eng. J. 23, 781–790 (1983)Google Scholar
  63. 63.
    La O’, G.J., In, H.J., Crumlin, E., Barbastathis, G., Shao-Horn, Y.: Recent advances in micro devices for electrochemical energy conversion and storage. Int. J. Energy Res. 31, 548–575 (2007)CrossRefGoogle Scholar
  64. 64.
    Lehr, F., Millies, M., Mewes, D.: Bubble-size distributions and flow fields in bubble columns. AIChE J. 48, 2426–2443 (2002)CrossRefGoogle Scholar
  65. 65.
    Lessoff, S., Dagan, G.: Solute transport in heterogeneous formations of bimodal conductivity distribution: 2. Applications. Water Resour. Res. 37, 473–480 (2001)CrossRefGoogle Scholar
  66. 66.
    Lin, Y.B., Zhan, Z.L., Liu, J., Barnett, S.A.: Direct operation of solid oxide fuel cells with methane fuel. Solid State Ionics 176, 1827–1835 (2005)CrossRefGoogle Scholar
  67. 67.
    Lu, N., Li, Q., Sun, X., Khaleel, M.A.: The modeling of a standalone solid-oxide fuel cell auxiliary power unit. J. Power Sources 1661, 938–948 (2006)CrossRefGoogle Scholar
  68. 68.
    Luo, L.S., Girimaji, S.S.: Lattice Boltzmann model for binary mixtures. Phys. Rev. E 66, 035301/1–035301/4 (2002)Google Scholar
  69. 69.
    Luo, L.S., Girimaji, S.S.: Theory of the lattice Boltzmann method: two-fluid model for binary mixtures. Phys. Rev. E 67, 036302/1–036302/11 (2003)Google Scholar
  70. 70.
    Luo, L.S., Svensen, H.F.: Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE 42, 1225–1233 (1996)CrossRefGoogle Scholar
  71. 71.
    Matsuzaki, Y., Baba, Y., Sakurai, T.: High electric conversion efficiency and electrochemical properties of anode-supported SOFCs. Solid State Ionics 174, 81–86 (2004)CrossRefGoogle Scholar
  72. 72.
    Mingzhe, D., Dullien, F., Jun, Z.: Characterization of water-flood saturation profile histories by the ‘complete’ capillary number. Transp. Porous Media 31, 213–237 (1998)CrossRefGoogle Scholar
  73. 73.
    Mousavi, S.M., Jafari, A., Yaghmaei, S., Vossoughi, M., Sarkomaa, P.: Computer simulation of fluid motion in a porous bed using a volume of fluid method: application in heap leaching. Miner. Eng. 19, 1077–1083 (2006)CrossRefGoogle Scholar
  74. 74.
    Nagel, F.P., Schildhauer, T., Biollaz, S.M.A., Wokaun, A.: Performance comparison of planar, tubular and Delta8 solid oxide fuel cells using a generalized finite volume model. J. Power Sources 184, 143–164 (2008)CrossRefGoogle Scholar
  75. 75.
    Newman, J.S., Tabias, C.W.: Theoretical analysis of current distribution in porous electrodes. J. Electrochem. Soc. 109, 1183–1191 (1962)CrossRefGoogle Scholar
  76. 76.
    Ni, M., Leung, D.Y.C., Leung, M.K.H.: Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes. Int. J. Hydrogen Energy 33, 5765–5772 (2008)CrossRefGoogle Scholar
  77. 77.
    Park, S., Cracium, R., Vohs, J.M., Gorte, R.J.: Direct oxidation of hydrocarbons in a solid oxide fuel cell I. Methane oxidation. J. Electrochem. Soc. 146, 3603–3605 (1999)CrossRefGoogle Scholar
  78. 78.
    Plumb, O.A., Whitaker, S.: Diffusion, adsorption and dispersion in heterogeneous porous media: the method of large scale averaging. In: Cushman, J.H. (ed.) Dynamics of Fluids in Hierarchical Porous Media. Academic Press, New York (1990)Google Scholar
  79. 79.
    Pulkrabek, W.W.: Engineering Fundamentals of the Internal Combustion Engine, 2nd edn. Pearson Prentice Hall, New Jeresey (2003)Google Scholar
  80. 80.
    Quintard, M., Whitaker, S.: One and two equation models for transient diffusion processes in two-phases systems. Adv Heat Transfer 23, 369–464 (1993)CrossRefGoogle Scholar
  81. 81.
    Quintard, M., Whitaker, S.: Transport in ordered and disordered porous media: volume averaged equations, closure problems and comparison with experiments. Chem. Eng. Sci. 48, 2537–2564 (1993)CrossRefGoogle Scholar
  82. 82.
    Quintard, M., Whitaker, S.: Convection, dispersion and interfacial transport of contaminants: homogeneous porous media. Adv. Water Res. 17, 221–239 (1994)CrossRefGoogle Scholar
  83. 83.
    Ramakrishna, P.A., Yang, S., Sohn, C.H.: Innovative design to improve the power density of a solid oxide fuel cell. Power Sources 158, 378–384 (2006)CrossRefGoogle Scholar
  84. 84.
    Riensche, E., Achenbach, E., Froning, D., Haines, M.R., Heidug, W.K., Lokurlu, A., von Andrian, S.: Clean combined-cycle SOFC power plant–cell modelling and process analysis. J. Power Sources 86, 404–410 (2000)CrossRefGoogle Scholar
  85. 85.
    Sheng, J.J., Hayes, R.E., Maini, B.B., Torkite, W.S.: Modelling foamy oil flow in porous media. Transp. Porous Media 35, 227–258 (1999)CrossRefGoogle Scholar
  86. 86.
    Singhal, S.C.: Advances in solid oxide fuel cell technology. Solid State Ionics 135, 305–313 (2000)CrossRefGoogle Scholar
  87. 87.
    Skelland, A.H.P.: Diffusional Mass Transfer. Wiley, New York (1974)Google Scholar
  88. 88.
    de Smedt, F., Wierenga, P.J.: A generalized solution for solute flow in soils with mobile and immobile water. Water Resour. Res. 15, 1137–1141 (1979)CrossRefGoogle Scholar
  89. 89.
    Štěpánek, F., Ansari, M.A.: Computer simulation of granule microstructure formation. Chem. Eng. Sci. 60, 4019–4029 (2005)CrossRefGoogle Scholar
  90. 90.
    Stone, H.A.: Dynamics of drop deformation and break up in viscous fluids. Annu. Rev. Fluid Mech. 26, 65–102 (1994)CrossRefGoogle Scholar
  91. 91.
    Sukeshini, A.M., Habibzadeh, B., Becker, B.P., Stoltz, C.A., Eichhorn, B.W., Jackson, G.S.: Electrochemical oxidation of H2, CO and CO/H2 mixtures on patterned Ni anodes on YSZ electrolytes. J. Electrochem. Soc. 153, A705–A715 (2006)CrossRefGoogle Scholar
  92. 92.
    Suwanwarangkul, R., Croiset, E., Pritzker, M.D., Fowler, M.W., Douglas, P.L., Entchev, E.: Modelling of a cathode-supported tubular solid oxide fuel cell operating with biomass-derived synthesis gas. J. Power Sources 166, 386–399 (2007)CrossRefGoogle Scholar
  93. 93.
    Torres, M.I.M., Freitas, V.P.: Treatment of rising damp in historical buildings: wall base ventilation. Build. Environ. 42, 424–435 (2007)CrossRefGoogle Scholar
  94. 94.
    Tseronis, K., Kookos, I.K., Theodoropoulos, C.: Modelling mass transport in solid oxide fuel cells anodes: a case for multicomponent dusty gas model. Chem. Eng. Sci. 63, 5626–5638 (2008)CrossRefGoogle Scholar
  95. 95.
    Tsipis, E.V., Kharton, V.V.: Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review II. Electrochemical behavior vs. materials science aspects. J. Solid State Electrochem. 12, 1367–1391 (2008)CrossRefGoogle Scholar
  96. 96.
    Vogel, T., Gerke, H., Zhang, R., Ge-nuchten, M.V.: Modeling flow and transport in a two-dimensional dual-permeability system with spatially variable hydraulic properties. J. Hydrol. 238, 78–89 (2000)CrossRefGoogle Scholar
  97. 97.
    Walters, K.M., Dean, A.M., Zhu, H.Y., Kee, R.J.: Homogeneous kinetics and equilibrium predictions of coking propensity in the anode channels of direct oxidation solid-oxide fuel cells using dry natural gas. J. Power Sources 123, 182–189 (2003)CrossRefGoogle Scholar
  98. 98.
    Wang, T., Wang, J., Jin, J.: A novel theoretical breakup kernel function of bubble/droplet in a turbulent flow. Chem. Eng. Sci. 59, 2593–2595 (2003)Google Scholar
  99. 99.
    Watt, D., Colston, B.: Investigating the effects of humidity and salt crystallization on medieval masonry. Build. Environ. 35, 737–749 (2000)CrossRefGoogle Scholar
  100. 100.
    Wexler, E.J.: Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow. In: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chap. B7, p. 190 (1992)Google Scholar
  101. 101.
    Wieringa, J.A., van Dieren, F., Janssen, J.J.M., Agterof, W.G.M.: Droplet break-up mechanism during emulsification in colloid mills at high dispersed fraction. Inst. Chem. Eng. 74, 554–562 (1996)Google Scholar
  102. 102.
    Whitaker, S.: Diffusion and dispersion in porous media. AIChE J. 13, 420–427 (1967)CrossRefGoogle Scholar
  103. 103.
    Whitaker, S.: Simultaneous heat, mass and momentum transfer in porous media: A theory of drying. Adv. Heat Transf. 13, 119–203 (1977)CrossRefGoogle Scholar
  104. 104.
    Xu, J., Froment, G.F.: Methane steam reforming and water-gas shift: I intrinsic kinetics. AIChE J. 35, 88–96 (1989)CrossRefGoogle Scholar
  105. 105.
    Zanotti, F., Carbonell, R.G.: Development of transport equations for multiphase systems I: general development for two-phase systems. Chem. Eng. Sci. 39, 263–278 (1984)CrossRefGoogle Scholar
  106. 106.
    Zanotti, F., Carbonell, R.G.: Development of transport equations for multiphase systems II: application to one-dimensional axi-symmetric flows of two-phases. Chem. Eng. Sci. 39, 279–297 (1984)CrossRefGoogle Scholar
  107. 107.
    Zhu, H., Kee, R.J., Pillai, M.R., Barnett, S.A.: Modeling electrochemical partial oxidation of methane for cogeneration of electricity and syngas in solid–oxide fuel cells. J. Power Sources 183, 143–150 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Department of Environmental and Natural Resources ManagementUniversity of IoanninaAgrinioGreece
  2. 2.Laboratorio de Fisica das ConstruccoesFaculdade de Engenharia Universidade do PortoPortoPortugal

Personalised recommendations