Modeling of Transport Processes in Porous Materials

Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 20)

Abstract

The modeling aspect for flow and mass in porous media is presented here. The cell model approach is used to obtain analytical and numerical solutions for mass transport in granular media with adsorbing grains. Several geometries (spherical, cylindrical, spheroidal) and a variety of adsorption mechanisms are examined and compared with experimentally derived data. The same problems are also solved in more realistic stochastically constructed structures of spherical grains. Finally, the spatial averaging technique is used to estimate useful macroscopic quantities, such as mass transfer coefficient.

Keywords

Porous Medium Mass Transport Mass Transfer Coefficient Peclet Number Heterogeneous Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahmadi, A., Aigueperse, A., Quintard, M.: Calculation of the effective properties describing active dispersion in porous media: from simple to complex porous media. Adv. Water Resour. 24, 423–438 (2001)CrossRefGoogle Scholar
  2. 2.
    Atkins, P., de Paula, J.: Physical Chemistry, 7th edn. Oxford University Press, Oxford (2002)Google Scholar
  3. 3.
    Bekri, S., Thovert, J.F., Adler, P.M.: Dissolution and deposition in fractures. Eng. Geo. 48, 283–308 (1997)CrossRefGoogle Scholar
  4. 4.
    Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (1960)Google Scholar
  5. 5.
    Burganos, V.N., Coutelieris, F.A., Payatakes, A.C.: Sherwood number for mass transfer to a swarm of adsorbing spheroidal particles at any Peclet number. AIChE J. 43, 844–848 (1997)CrossRefGoogle Scholar
  6. 6.
    Coutelieris, F.A.: The influence of axial orientation of spheroidal particles on the adsorption rate in a granular porous medium. Stud. Surf. Sci. Catal. 144, 745–751 (2002)CrossRefGoogle Scholar
  7. 7.
    Coutelieris, F.A.: Modeling of flow and mass transport in granular porous media. Cent. Eur. J. Phys. 9, 962–968 (2011)CrossRefGoogle Scholar
  8. 8.
    Coutelieris, F.A., Burganos, V.N., Payatakes, A.C.: On mass transfer from a newtonian fluid to a swarm of adsorbing spheroidal particles for high Peclet numbers. J. Colloid Interface Sci. 161, 43–52 (1993)CrossRefGoogle Scholar
  9. 9.
    Coutelieris, F.A., Burganos, V.N., Payatakes, A.C.: Convective diffusion and adsorption in a swarm of spheroidal particles. AIChE J. 41, 1122–1134 (1995)CrossRefGoogle Scholar
  10. 10.
    Coutelieris, F.A., Burganos, V.N., Payatakes, A.C.: Model of adsorption–reaction–desorption in a swarm of spheroidal particles. AIChE J. 50, 779–785 (2004)CrossRefGoogle Scholar
  11. 11.
    Coutelieris, F.A., Kainourgiakis, M.E., Stubos, A.K.: The effect of the porosity on the adsorption rate in granular porous media. Stud. Surf. Sci. Catal. 144, 753–760 (2002)CrossRefGoogle Scholar
  12. 12.
    Coutelieris, F.A., Kainourgiakis, M.E., Stubos, A.K.: Low Peclet mass transport in assemblages of spherical particles for two different adsorption mechanisms. J. Colloid Interface Sci. 264, 20–29 (2003)CrossRefGoogle Scholar
  13. 13.
    Coutelieris, F.A., Kainourgiakis, M.E., Stubos, A.K.: Low to moderate Peclet mass transport in assemblages of spherical particles for a realistic adsorption–reaction–desorption mechanism. Powder Tech. 159, 173–179 (2005)CrossRefGoogle Scholar
  14. 14.
    Dassios, G., Hadjinicolaou, M., Payatakes, A.C.: Generalized eigenfunctions and complete semiseparable solutions for stokes flow in spheroidal coordinates. Quart. Appl. Math. 52, 157–191 (1994)Google Scholar
  15. 15.
    Ellis, T.G., Eliosov, E., Schmit, C.G., Jahan, K., Park, K.Y.: Activated sludge and other aerobic suspended culture processes. Water Environ. Res. 74, 385–410 (2002)CrossRefGoogle Scholar
  16. 16.
    Kapellos, G.E., Alexiou, T.S., Payatakes, A.C.: A multiscale theoretical model for diffusive mass transfer in cellular biological media. Math. Biosci. 210, 177–237 (2007)CrossRefGoogle Scholar
  17. 17.
    Levich, V.G.: Physicochemical Hydrodynamics. Pentice-Hall, Englewood Cliffs (1962)Google Scholar
  18. 18.
    Meakin, P., Skjeltorp, A.T.: Application of experimental and numerical models to the physics of multiparticle systems. Adv. Phys. 42, 1–127 (1993)CrossRefGoogle Scholar
  19. 19.
    Mourzenko, V.V., Bekri, S., Thovert, J.F., Adler, P.M.: Deposition in fractures. Chem. Eng. Commun. 150, 431–464 (1996)CrossRefGoogle Scholar
  20. 20.
    Peters, M.H., Jalan, R.K., Gupta, D.: A dynamic simulation of particle deposition on spherical collectors. Chem. Eng. Sci. 40, 723–731 (1985)CrossRefGoogle Scholar
  21. 21.
    Quintard, M., Whitaker, S.: Transport in ordered and disordered porous media: volume averaged equations, closure problems and comparison with experiments. Chem. Eng. Sci. 48, 2537–2564 (1993)CrossRefGoogle Scholar
  22. 22.
    Quintard, M., Whitaker, S.: Convection, dispersion and interfacial transport of contaminants: Homogeneous porous media. Adv. Water Resour. 17, 221–239 (1994)CrossRefGoogle Scholar
  23. 23.
    Sahimi, M.: Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65, 1393–1534 (1993)CrossRefGoogle Scholar
  24. 24.
    Salles, J., Thovert, J.F., Delannay, R., Prevors, L., Auriault, J.L., Adler, P.M.: Taylor dispersion in porous media. Determination of the dispersion tensor. Phys. Fluids A - Fluid 5, 2348–2367 (1993)CrossRefGoogle Scholar
  25. 25.
    Smith, J.M.: Chemical Engineering Kinetics. McGraw-Hill, Tokyo (1981)Google Scholar
  26. 26.
    Tardos, G.I., Gutfinger, C., Abuaf, N.: High Peclet mass transfer to a sphere in a fixed or fluidized bed. AIChE J. 22, 1147–1150 (1976)CrossRefGoogle Scholar
  27. 27.
    Valdes-Parada, F.J., Ochoa-Tapia, J.A., Alvarez-Ramirez, J.: Effective medium equations for fractional fick’s law in porous media. Phys. A 373, 339–353 (2007)CrossRefGoogle Scholar
  28. 28.
    Whitaker, S.: Diffusion and dispersion in porous media. AIChE J. 13, 420–427 (1967)CrossRefGoogle Scholar
  29. 29.
    Wilson, E.J., Geankoplis, C.J.: Liquid mass transfer at very low reynolds numbers in packed beds. Ind. Eng. Chem. Fund 5, 9–14 (1966)CrossRefGoogle Scholar
  30. 30.
    Zanotti, F., Carbonell, R.G.: Development of transport equations for multiphase systems I: general development for two-phase systems. Chem. Eng. Sci. 39, 263–278 (1984)CrossRefGoogle Scholar
  31. 31.
    Zanotti, F., Carbonell, R.G.: Development of transport equations for multiphase systems II: application to one-dimensional axi-symmetric flows of two-phases. Chem. Eng. Sci. 39, 279–297 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Department of Environmental and Natural Resources ManagementUniversity of IoanninaAgrinioGreece
  2. 2.Laboratorio de Fisica das ConstruccoesFaculdade de Engenharia Universidade do PortoPortoPortugal

Personalised recommendations