Formal Verification of a Key Establishment Protocol for EPC Gen2 RFID Systems: Work in Progress

  • Wiem Tounsi
  • Nora Cuppens-Boulahia
  • Frédéric Cuppens
  • Joaquin Garcia-Alfaro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6888)


The EPC Class-1 Generation-2 (Gen2 for short) is a standard Radio Frequency Identification (RFID) technology that has gained a prominent place on the retail industry. The Gen2 standard lacks, however, of verifiable security functionalities. Eavesdropping attacks can, for instance, affect the security of monitoring applications based on the Gen2 technology. We are working on a key establishment protocol that aims at addressing this problem. The protocol is applied at both the initial identification phase and those remainder operations that may require security, such as password protected operations. We specify the protocol using the High Level Protocol Specification Language (HLPSL). Then, we verify the secrecy property of the protocol using the AVISPA model checker tool. The results that we report show that the current version of the protocol guarantees sensitive data secrecy under the presence of a passive adversary.


Basic Role Security Goal Linear Temporal Logic Formula Electronic Product Code Eavesdrop Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J., Drielsma, P.H., Heám, P.C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.: The AVISPA Tool for the Automated Validation of Internet Security Protocols and Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Armando, A., Compagna, L.: SATMC: A SAT-Based Model Checker for Security Protocols. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 730–733. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Basin, D.A., Sebastian, M., Vigano, L.: OFMC: A symbolic model checker for security protocols. International Journal of Information Security 4(3), 181–208 (2005)CrossRefGoogle Scholar
  4. 4.
    Boichut, Y., Heam, P.C., Kouchnarenko, O., Oehl, F.: Improvements on the genet and klay technique to automatically verify security protocols. In: Automated Verification of Infinite-State Systems (AVIS 2004), Joint to ETAPS 2004, pp. 1–11 (2004)Google Scholar
  5. 5.
    Chevalier, Y., Compagna, L., Cuellar, J., Hankes Drieslma, P., Mantovani, J., Modersheim, S., Vigneron, L.: A High Level Protocol Specification Language for Industrial Security-Sensitive Protocols. In: Workshop on Specification and Automated Processing of Security Requirements (SAPS 2004), pp. 193–205 (2004)Google Scholar
  6. 6.
    Cao, T., Bertino, E., Lei, H.: Security Analysis of the SASI Protocol. IEEE Transactions on Dependable and Secure Computing 6(1), 73–77 (2008)Google Scholar
  7. 7.
    Dolev, D., Yao, A.: On the Security of Public-Key Protocols. IEEE Transactions on Information Theory 2(29), 198–207 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    EPCglobal. EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860-960 MHz,
  9. 9.
    Garcia-Alfaro, J., Barbeau, M., Kranakis, E.: Security Threat Mitigation Trends in Low-cost RFID Systems. In: 2nd SETOP International Workshop on Autonomous and Spontaneous Security SETOP 2009, pp. 193–207 (2009)Google Scholar
  10. 10.
    Juels, A.: RFID Security and Privacy: A Research Survey. IEEE Journal On Selected Aeas In Communications 24(2), 381–394 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lamport, L.: The temporal logic of actions. ACM Transactions on Programming Languages and Systems 16(3), 872–923 (1994)CrossRefGoogle Scholar
  12. 12.
    Li, T., Deng, R.H.: Vulnerability Analysis of EMAP-An Efficient RFID Mutual Authentication Protocol. In: 2nd International Conference on Availability, Reliability and Security, pp. 238–245 (2007)Google Scholar
  13. 13.
    Li, T., Wang, G.: Security Analysis of Two Ultra-Lightweight RFID Authentication Protocols. In: IFIP International Federation for Information Security, pp. 108–120 (2007)Google Scholar
  14. 14.
    Schneier, B.: Applied Cryptography, protocols, algorithms, and source code in C. J. Wiley & Sons, Inc. (1996)Google Scholar
  15. 15.
    Staake, T., Thiesse, F., Fleisch, E.: Extending the EPC Network — The Potential of RFID in Anti-Counterfeiting. In: ACM Symposium on Applied Computing, pp. 1607–1612 (2005)Google Scholar
  16. 16.
    Tounsi, W., Garcia-Alfaro, J., Cuppens-Boulahia, N., Cuppens, F.: Securing the Communications of Home Health Care Systems based on RFID Sensor Networks. In: 8th Annual Communication Networks and Services Research (CNSR) Conference, pp. 284–291 (2010)Google Scholar
  17. 17.
    Turuani, M.: The CL-Atse Protocol Analyser. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wiem Tounsi
    • 1
  • Nora Cuppens-Boulahia
    • 1
  • Frédéric Cuppens
    • 1
  • Joaquin Garcia-Alfaro
    • 1
  1. 1.Institut Télécom, Télécom BretagneCesson-SévignéFrance

Personalised recommendations