The Wave Equation: Control and Numerics

  • Sylvain Ervedoza
  • Enrique Zuazua
Part of the Lecture Notes in Mathematics book series (LNM, volume 2048)


In these Notes we make a self-contained presentation of the theory that has been developed recently for the numerical analysis of the controllability properties of wave propagation phenomena and, in particular, for the constant coefficient wave equation. We develop the so-called discrete approach. In other words, we analyze to which extent the semidiscrete or fully discrete dynamics arising when discretizing the wave equation by means of the most classical scheme of numerical analysis, shear the property of being controllable, uniformly with respect to the mesh-size parameters and if the corresponding controls converge to the continuous ones as the mesh-size tends to zero. We focus mainly on finite-difference approximation schemes for the one-dimensional constant coefficient wave equation. Using the well known equivalence of the control problem with the observation one, we analyze carefully the second one, which consists in determining the total energy of solutions out of partial measurements. We show how spectral analysis and the theory of non-harmonic Fourier series allows, first, to show that high frequency wave packets may behave in a pathological manner and, second, to design efficient filtering mechanisms. We also develop the multiplier approach that allows to provide energy identities relating the total energy of solutions and the energy concentrated on the boundary. These observability properties obtained after filtering, by duality, allow to build controls that, normally, do not control the full dynamics of the system but rather guarantee a relaxed controllability property. Despite of this they converge to the continuous ones. We also present a minor variant of the classical Hilbert Uniqueness Method allowing to build smooth controls for smooth data. This result plays a key role in the proof of the convergence rates of the discrete controls towards the continuous ones. These results are illustrated by means of several numerical experiments.


Wave Equation Observability Property Observability Inequality Uniform Observability Fourier Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



When preparing the last version of this manuscript we were supported by Alejandro Maas Jr., internship student from the Universidad Técnica Federico Santa María (UTFSM), Chile, visiting BCAM for two months early 2011. He contributed to improve our plots and also to run the numerical experiments we present here. We express our gratitude to him for his efficient and friendly help. This work was supported by the ERC Advanced Grant FP7–246775 NUMERIWAVES, the Grant PI2010–04 of the Basque Government, the ESF Research Networking Program OPTPDE and Grant MTM2008–03541 of the MICINN, Spain. The first author acknowledges the hospitality and support of the Basque Center for Applied Mathematics where part of this work was done.


  1. 1.
    K. Ammari, M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM Contr. Optim. Calc. Var. 6, 361–386 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    M. Asch, G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation—a numerical study. ESAIM Contr. Optim. Calc. Var. 3, 163–212 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    D. Auroux, J. Blum, Back and forth nudging algorithm for data assimilation problems. C. R. Math. Acad. Sci. Paris 340(12), 873–878 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    G.A. Baker, J.H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO Anal. Numér. 13(2), 75–100 (1979)MathSciNetzbMATHGoogle Scholar
  5. 5.
    C. Bardos, F. Bourquin, G. Lebeau, Calcul de dérivées normales et méthode de Galerkin appliquée au problème de contrôlabilité exacte. C. R. Acad. Sci. Paris Sér. I Math. 313(11), 757–760 (1991)MathSciNetzbMATHGoogle Scholar
  6. 6.
    C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Contr. Optim. 30(5), 1024–1065 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    T.Z. Boulmezaoud, J.M. Urquiza, On the eigenvalues of the spectral second order differentiation operator and application to the boundary observability of the wave equation. J. Sci. Comput. 31(3), 307–345 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    F. Boyer, F. Hubert, J. Le Rousseau, Discrete carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations. J. Math. Pures Appl. (9) 93(3), 240–276 (2010)Google Scholar
  9. 9.
    F. Boyer, F. Hubert, J. Le Rousseau, Discrete carleman estimates for elliptic operators in arbitrary dimension and applications,. SIAM J. Contr. Optim. 48, 5357–5397 (2010)zbMATHCrossRefGoogle Scholar
  10. 10.
    F. Boyer, F. Hubert, J. Le Rousseau, Uniform null-controllability properties for space/time-discretized parabolic equations. Numer. Math. 118(4), 601–661 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    U. Brauer, G. Leugering, On boundary observability estimates for semi-discretizations of a dynamic network of elastic strings. Contr. Cybern. 28(3), 421–447 (1999); Recent advances in control of PDEs.Google Scholar
  12. 12.
    A.L. Bughgeim, Volterra Equations and Inverse Problems, Inverse and Ill-posed Problems Series. (VSP, Utrecht, 1999)Google Scholar
  13. 13.
    A.L. Bukhgeĭm, M.V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems. Dokl. Akad. Nauk SSSR 260(2), 269–272 (1981)MathSciNetGoogle Scholar
  14. 14.
    N. Burq, P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 749–752 (1997)zbMATHCrossRefGoogle Scholar
  15. 15.
    N. Burq, G. Lebeau, Mesures de défaut de compacité, application au système de Lamé. Ann. Sci. École Norm. Sup. (4) 34(6), 817–870 (2001)Google Scholar
  16. 16.
    N. Burq, M. Zworski, Geometric control in the presence of a black box. J. Amer. Math. Soc. 17(2), 443–471 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    C. Castro, S. Micu, Boundary controllability of a linear semi-discrete 1-d wave equation derived from a mixed finite element method. Numer. Math. 102(3), 413–462 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    C. Castro, S. Micu, A. Münch, Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal. 28(1), 186–214 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    C. Castro, E. Zuazua, Concentration and lack of observability of waves in highly heterogeneous media. Arch. Ration. Mech. Anal. 164(1), 39–72 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    N. Cîndae, S. Micu, M. Tucsnak, An approximation method for exact controls of vibrating systems. SIAM J. Control Optim. 1283–1305 (2011)Google Scholar
  21. 21.
    G.C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations. Scientific Computation. (Springer, Berlin, 2002); With a foreword by R. Glowinski.Google Scholar
  22. 22.
    J.-M. Coron, S. Ervedoza, O. Glass, Uniform observability estimates for the 1-d discretized wave equation and the random choice method. Compt. Rendus Math. 347(9–10), 505–510 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    R. Dáger, E. Zuazua, Wave Propagation, Observation and Control in 1{ -}d Flexible Multi-structures, Mathématiques & Applications (Berlin), vol. 50. (Springer, Berlin, 2006)Google Scholar
  24. 24.
    B. Dehman, G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Contr. Optim. 48(2), 521–550 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    B. Dehman, G. Lebeau, E. Zuazua, Stabilization and control for the subcritical semilinear wave equation. Ann. Sci. École Norm. Sup. (4) 36(4), 525–551 (2003)Google Scholar
  26. 26.
    T. Duyckaerts, X. Zhang, E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(1), 1–41 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    S. Ervedoza, Spectral conditions for admissibility and observability of wave systems: Applications to finite element schemes. Numer. Math. 113(3), 377–415 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    S. Ervedoza, Observability properties of a semi-discrete 1D wave equation derived from a mixed finite element method on nonuniform meshes. ESAIM Contr. Optim. Calc. Var. 16(2), 298–326 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    S. Ervedoza, Admissibility and observability for Schrödinger systems: Applications to finite element approximation schemes. Asymptot. Anal. 71(1–2), 1–32 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    S. Ervedoza, J. Valein, On the observability of abstract time-discrete linear parabolic equations. Rev. Mat. Complut. 23(1), 163–190 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    S. Ervedoza, C. Zheng, E. Zuazua, On the observability of time-discrete conservative linear systems. J. Funct. Anal. 254(12), 3037–3078 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    S. Ervedoza, E. Zuazua, On the numerical approximation of controls for waves, Springer Briefs in Mathematics, to appear.Google Scholar
  33. 33.
    S. Ervedoza, E. Zuazua, Uniform exponential decay for viscous damped systems, vol. 78, In: Advances in Phase Space Analysis of Partial Differential Equations, Progress in Nonlinear Differential Equations and Their Applications, vol. 78 (Birkhäuser Boston Inc., Boston, MA, 2009) pp. 95–112Google Scholar
  34. 34.
    S. Ervedoza, E. Zuazua, Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pure. Appl. 91, 20–48 (2009)MathSciNetzbMATHGoogle Scholar
  35. 35.
    S. Ervedoza, E. Zuazua, A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1375–1401 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    S. Ervedoza, E. Zuazua, Propagation, observation and numerical approximations of waves. Book in preparation.Google Scholar
  37. 37.
    X. Fu, J. Yong, X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations. SIAM J. Contr. Optim. 46(5), 1578–1614 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    P. Gérard, Microlocal defect measures. Comm. Part. Differ. Equat. 16(11), 1761–1794 (1991)zbMATHCrossRefGoogle Scholar
  39. 39.
    J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18, 697–715 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    R. Glowinski, Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys. 103(2), 189–221 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    R. Glowinski, W. Kinton, M.F. Wheeler, A mixed finite element formulation for the boundary controllability of the wave equation. Int. J. Numer. Meth. Eng. 27(3), 623–635 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    R. Glowinski, C.H. Li, On the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of the wave equation. C. R. Acad. Sci. Paris Sér. I Math. 311(2), 135–142 (1990)MathSciNetzbMATHGoogle Scholar
  43. 43.
    R. Glowinski, C.H. Li, J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Japan J. Appl. Math. 7(1), 1–76 (1990)MathSciNetzbMATHGoogle Scholar
  44. 44.
    R. Glowinski, J.-L. Lions, J. He, Exact and Approximate Controllability for Distributed Parameter Systems, Encyclopedia of Mathematics and Its Applications, vol. 117, (Cambridge University Press, Cambridge, 2008); A numerical approach.Google Scholar
  45. 45.
    P. Grisvard, Contrôlabilité exacte des solutions de l’équation des ondes en présence de singularités. J. Math. Pure. Appl. (9) 68(2), 215–259 (1989)Google Scholar
  46. 46.
    A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Port. Math. 46(3), 245–258 (1989)MathSciNetzbMATHGoogle Scholar
  47. 47.
    L.F. Ho, Observabilité frontière de l’équation des ondes. C. R. Acad. Sci. Paris Sér. I Math. 302(12), 443–446 (1986)zbMATHGoogle Scholar
  48. 48.
    L. Hörmander, Linear Partial Differential Operators. Die Grundlehren der mathematischen Wissenschaften, Bd. 116. (Academic Press, New York, 1963)Google Scholar
  49. 49.
    L.I. Ignat, E. Zuazua, Dispersive properties of a viscous numerical scheme for the Schrödinger equation. C. R. Math. Acad. Sci. Paris 340(7), 529–534 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    L.I. Ignat, E. Zuazua, A two-grid approximation scheme for nonlinear Schrödinger equations: dispersive properties and convergence. C. R. Math. Acad. Sci. Paris 341(6), 381–386 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    L.I. Ignat, E. Zuazua, Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 47(2), 1366–1390 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    O.Y. Imanuvilov, M. Yamamoto, Determination of a coefficient in an acoustic equation with a single measurement. Inverse Probl. 19(1), 157–171 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    J.A. Infante, E. Zuazua, Boundary observability for the space semi discretizations of the 1-d wave equation. Math. Model. Num. Ann. 33, 407–438 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41(1), 367–379 (1936)MathSciNetCrossRefGoogle Scholar
  55. 55.
    E. Isaacson, H.B. Keller, Analysis of Numerical Methods, (Wiley, New York, 1966)zbMATHGoogle Scholar
  56. 56.
    V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 2nd edn. vol. 127, (Springer, New York, 2006)Google Scholar
  57. 57.
    J. Klamka, Controllability of Dynamical Systems, Mathematics and Its Applications (East European Series). vol. 48, (Kluwer, Dordrecht, 1991)Google Scholar
  58. 58.
    M.V. Klibanov, Inverse problems and Carleman estimates. Inverse Probl. 8(4), 575–596 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    M.V. Klibanov, A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. Inverse and Ill-posed Problems Series. (VSP, Utrecht, 2004)Google Scholar
  60. 60.
    V. Komornik, A new method of exact controllability in short time and applications. Ann. Fac. Sci. Toulouse Math. (5) 10(3), 415–464 (1989)Google Scholar
  61. 61.
    S. Labbé, E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems. Syst. Contr. Lett. 55(7), 597–609 (2006)zbMATHCrossRefGoogle Scholar
  62. 62.
    C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3. SIAM J. Math. Anal. 42(2), 785–832 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    G. Lebeau, Contrôle analytique. I. Estimations a priori. Duke Math. J. 68(1), 1–30 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    G. Lebeau, M. Nodet, Experimental study of the HUM control operator for linear waves. Exp. Math. 19(1), 93–120 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    G. Lebeau, E. Zuazua, Null-controllability of a system of linear thermoelasticity. Arch. Ration. Mech. Anal. 141(4), 297–329 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    E.B. Lee, L. Markus, Foundations of Optimal Control Theory, 2nd edn. ed. by Robert E. Krieger (Melbourne, FL, 1986)Google Scholar
  67. 67.
    L. León, E. Zuazua, Boundary controllability of the finite-difference space semi-discretizations of the beam equation. ESAIM Contr. Optim. Calc. Var. 8, 827–862 (2002); A tribute to J. L. Lions.Google Scholar
  68. 68.
    J.-L. Lions, Contrôlabilité Exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, vol. RMA 8. (Masson, Paris, 1988)Google Scholar
  69. 69.
    J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30(1), 1–68 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    A. López, E. Zuazua, Some New Results Related to the Null Controllability of the 1-d Heat Equation, In: Séminaire sur les Équations aux Dérivées Partielles, 1997–1998, (École Polytech., Palaiseau, 1998) p. Exp. No. VIII, 22.Google Scholar
  71. 71.
    P. Loreti, M. Mehrenberger, An ingham type proof for a two-grid observability theorem. ESAIM: COCV 14(3), 604–631 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    F. Macià, The Effect of Group Velocity in the Numerical Analysis of Control Problems for the Wave Equation, In: Mathematical and numerical aspects of wave propagation—WAVES 2003, (Springer, Berlin, 2003) pp. 195–200Google Scholar
  73. 73.
    F. Macià, Wigner measures in the discrete setting: High-frequency analysis of sampling and reconstruction operators. SIAM J. Math. Anal. 36(2), 347–383 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    F. Macià, E. Zuazua, On the lack of observability for wave equations: a Gaussian beam approach. Asymptot. Anal. 32(1), 1–26 (2002)MathSciNetzbMATHGoogle Scholar
  75. 75.
    A. Marica, Propagation and dispersive properties for the discontinuous Galerkin and higher order finite element approximations of the wave and Schrödinger equations, Ph D Thesis, Universidad Autónoma de Madrid, 2010Google Scholar
  76. 76.
    A. Marica, E. Zuazua, Localized solutions for the finite difference semi-discretization of the wave equation. C. R. Math. Acad. Sci. Paris 348(11–12), 647–652 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    S. Micu, Uniform boundary controllability of a semi-discrete 1-D wave equation. Numer. Math. 91(4), 723–768 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    S. Micu, E. Zuazua, An Introduction to the Controllability of Partial Differential Equations, ed. by T. Sari, Collection Travaux en Cours Hermannin Quelques Questions de Théorie du Contrôle, pp. 67–150 (2005)Google Scholar
  79. 79.
    L. Miller, Controllability cost of conservative systems: Resolvent condition and transmutation. J. Funct. Anal. 218(2), 425–444 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    L. Miller, The control transmutation method and the cost of fast controls. SIAM J. Contr. Optim. 45(2), 762–772 (2006)CrossRefGoogle Scholar
  81. 81.
    A. Münch, A.F. Pazoto, Uniform stabilization of a viscous numerical approximation for a locally damped wave equation. ESAIM Contr. Optim. Calc. Var. 13(2), 265–293 (2007)zbMATHCrossRefGoogle Scholar
  82. 82.
    M. Negreanu, A.-M. Matache, C. Schwab, Wavelet filtering for exact controllability of the wave equation. SIAM J. Sci. Comput. 28(5), 1851–1885 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    M. Negreanu, E. Zuazua, Convergence of a multigrid method for the controllability of a 1-d wave equation. C. R. Math. Acad. Sci. Paris 338(5), 413–418 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    A. Osses, A rotated multiplier applied to the controllability of waves, elasticity, and tangential Stokes control. SIAM J. Contr. Optim. 40(3), 777–800 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    K.D. Phung, Waves, Damped Wave and Observation, ed. by Ta-Tsien Li, Yue-Jun Peng, Bo-Peng Rao. Some Problems on Nonlinear Hyperbolic Equations and Applications, Series in Contemporary Applied Mathematics CAM 15, 2010.Google Scholar
  86. 86.
    J.-P. Puel, M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem. Inverse Probl. 12(6), 995–1002 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    J.V. Ralston, Solutions of the wave equation with localized energy. Comm. Pure Appl. Math. 22, 807–823 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    K. Ramdani, T. Takahashi, G. Tenenbaum, M. Tucsnak, A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator. J. Funct. Anal. 226(1), 193–229 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    K. Ramdani, T. Takahashi, M. Tucsnak, Semi-discrétisation en espace du problème de la stabilisation interne de l’équation des poutres. ESAIM Proc. 18, 48–56 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    K. Ramdani, T. Takahashi, M. Tucsnak, Uniformly exponentially stable approximations for a class of second order evolution equations—application to LQR problems. ESAIM Contr. Optim. Calc. Var. 13(3), 503–527 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    J. Rauch, On convergence of the finite element method for the wave equation. SIAM J. Numer. Anal. 22(2), 245–249 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    P.-A. Raviart, J.-M. Thomas, Introduction à l’analyse Numérique des Équations aux Dérivées Partielles, Collection Mathématiques Appliquées pour la Maitrise. [Collection of Applied Mathematics for the Master’s Degree]. (Masson, Paris, 1983)Google Scholar
  93. 93.
    L. Robbiano, Théorème d’unicité adapté au contrôle des solutions des problèmes hyperboliques. Comm. Part. Differ. Equat. 16(4–5), 789–800 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptotic Anal. 10(2), 95–115 (1995)MathSciNetzbMATHGoogle Scholar
  95. 95.
    L. Rosier, B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation: recent progresses. J. Syst. Sci. Complex 22(4), 647–682 (2009)MathSciNetCrossRefGoogle Scholar
  96. 96.
    D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20(4), 639–739 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    T.I. Seidman, J. Yong, How violent are fast controls? II. Math. Contr. Signals Syst. 9(4), 327–340 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    E.D. Sontag, Mathematical Control Theory, Texts in Applied Mathematics. vol. 6, 2nd edn. (Springer, New York, 1998); Deterministic finite-dimensional systems.Google Scholar
  99. 99.
    L.R. Tcheugoué Tebou, E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1d wave equation. Adv. Comput. Math. 26(1–3), 337–365 (2007)MathSciNetCrossRefGoogle Scholar
  100. 100.
    L.R. Tcheugoué Tébou, E. Zuazua, Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95(3), 563–598 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    L.N. Trefethen, Group velocity in finite difference schemes. SIAM Rev. 24(2), 113–136 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    M. Tucsnak, G. Weiss, Observation and Control for Operator Semigroups Birkäuser Advanced Texts, vol. 11, (Springer, Basel, 2009)CrossRefGoogle Scholar
  103. 103.
    G. Uhlmann, Developments in Inverse Problems Since Calderón’s Foundational Paper, In Harmonic Analysis and Partial Differential Equations. (Chicago, IL, 1996), Chicago Lectures in Mathematics, (Chicago, IL, 1999) pp. 295–345Google Scholar
  104. 104.
    R. Vichnevetsky, J.B. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations, SIAM Studies in Applied Mathematics. vol. 5, (SIAM, Philadelphia, PA 1982); With a foreword by G. Birkhoff.Google Scholar
  105. 105.
    R.M. Young, An Introduction to Nonharmonic Fourier Series, 1st edn. (Academic Press, San Diego, CA, 2001)zbMATHGoogle Scholar
  106. 106.
    X. Zhang, Explicit observability estimate for the wave equation with potential and its application. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456(1997), 1101–1115 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    X. Zhang, C. Zheng, E. Zuazua, Exact controllability of the time discrete wave equation. Discrete and Continuous Dynamical Systems, (2007)Google Scholar
  108. 108.
    X. Zhang, E. Zuazua, Exact Controllability of the Semi-linear Wave Equation, Unsolved Problems in Mathematical Systems and Control Theory, (Princeton University Press, Princeton, 2004), pp. 173–178Google Scholar
  109. 109.
    E. Zuazua, Exact controllability for the semilinear wave equation. J. Math. Pures Appl. (9) 69(1), 1–31 (1990)Google Scholar
  110. 110.
    E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 10(1), 109–129 (1993)MathSciNetzbMATHGoogle Scholar
  111. 111.
    E. Zuazua, Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pure. Appl. (9) 78(5), 523–563 (1999)Google Scholar
  112. 112.
    E. Zuazua, Some Results and Open Problems on the Controllability of Linear and Semilinear Heat Equations, In Carleman Estimates and Applications to Uniqueness and Control Theory (Cortona, 1999), Progress in Nonlinear Differential Equations and Their Applications, vol. 46, (Birkhäuser Boston, Boston, MA, 2001), pp. 191–211Google Scholar
  113. 113.
    E. Zuazua, Controllability of partial differential equations and its semi-discrete approximations. Discrete Contin. Dyn. Syst. 8(2), 469–513 (2002); Current developments in partial differential equations (Temuco, 1999)Google Scholar
  114. 114.
    E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    E. Zuazua, Control and Numerical Approximation of the Wave and Heat Equations, In International Congress of Mathematicians. vol. 3, European Mathematical Society, (Zürich, 2006), pp. 1389–1417Google Scholar
  116. 116.
    E. Zuazua, Control and stabilization of waves on 1-d networks, “Traffic flow on networks”, B. Piccoli and M. Rascle, eds., Lecture Notes in Mathematics- C.I.M.E. Foundation Subseries, Springer Verlag, to appearGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.CNRS; Institut de Mathématiques, de Toulouse UMR 5219ToulouseFrance
  2. 2.Université de Toulouse; UPS, INSA, INP, ISAE, UT1, UTM; IMTToulouseFrance
  3. 3.BCAM - Basque Center for Applied MathematicsBilbaoBasque Country, Spain
  4. 4.Ikerbasque Research Professor, Ikerbasque - Basque Foundation for ScienceBilbaoBasque Country, Spain

Personalised recommendations