Critical and Granular Casimir Forces: A Methodological Convergence from Nano to Macroscopic Scales

  • Y. Nahmad-Molinari
  • G. M. Rodríguez-Liñán
  • J. F. Reyes-Tendilla
  • G. Pérez-Ángel
Part of the Environmental Science and Engineering book series (ESE)


Recent advances in colloidal science that have lead to directly measuring depletion and critical Casimir interaction potentials are reviewed. Methodological convergence of these studies is exploited and extended to granular systems in order to measure effective interactions among their constituent particles. Experimental evidence of depletion interactions as well as a novel “granular Casimir effect” is presented and subtle differences are discussed.


Optical Tweezer Casimir Force Exterior Region Restitution Coefficient Casimir Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beysens D, Esteve D (1985) Adsorption phenomena at the surface of silica spheres in a binary liquid mixture. Phys Rev Lett 54:2123CrossRefGoogle Scholar
  2. Bordallo-Favela RA, Ramírez-Saíto A1 CA Pacheco-Molina1 JA, Perer Burgos1, 2 Y, Nahmad-Molinari1, Pérez G (2009) Effective potentials of dissipative hard spheres in granular matter. Eur Phys J E28:395–400Google Scholar
  3. Casimir HBG, Polder D (1948) The Influence of Retardation on the London-van der Waals Forces. Phys Rev 73:360CrossRefGoogle Scholar
  4. Crocker JC, Matteo JA, Dinsmore AD, Yodh AG (1999) Entropic attraction and repulsion in binary colloids probed with a line optical tweezer. Phys Rev Lett 82:21CrossRefGoogle Scholar
  5. Fisher ME, De Gennes PG (1978) Phénomènes aux parois dans un mé-lange binaire critique. CR Acad Sci Paris B 287:207Google Scholar
  6. Hertlein C, Helden L, Gambassi A, Dietrich S, Bechinger C (2008) Direct measurement of critical Casimir forces. Nature 451:172CrossRefGoogle Scholar
  7. Hernández-Díaz L, Hernández-Reta JC, Encinas-Oropesa A, Nahmad-Molinari Y (2010) Coupling of demixing and magnetic ordering phase transitions probed by turbidimetric measurements in a binary mixture doped with magnetic nanoparticles. J Phys Condens Matter 22:195101Google Scholar
  8. Lekkerkerker HNW, Tuinier R (2011) Colloids and the depletion interaction. (Lecture Notes in Physics 833), Springer, New York, 233 ppGoogle Scholar
  9. Odenbach S (ed) (2003) Ferrofluids: magnetically controllable fluids and their applications (Lecture notes in physics 594), Springer, New York, 253 ppGoogle Scholar
  10. Schlesener F, Hanke A, Dietrich S (2003) Critical Casimir Forces in Colloidal Suspensions. J Stat Phys 110:981CrossRefGoogle Scholar
  11. Tata BVR, Rajamani PVJ, Chakrabarti AN, Wasan DT (2000) Gas-liquid transition in a two-dimensional system of millimeter-sized like-charged metal balls. Phys Rev Lett 84:3626–3629CrossRefGoogle Scholar
  12. Tsori Y, Tournilhac F, Leibler L (2004) Demixing in simple fluids induced by electric field gradients. Nature 430(544):02758Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Y. Nahmad-Molinari
    • 1
  • G. M. Rodríguez-Liñán
    • 1
  • J. F. Reyes-Tendilla
    • 1
  • G. Pérez-Ángel
    • 2
  1. 1.Instituto de FísicaUniversidad Autónoma San Luis PotosíSan Luis PotosíMexico
  2. 2.CINVESTAV-MéridaMéridaMexico

Personalised recommendations