Analysis of the Blasius’ Formula and the Navier–Stokes Fractional Equation

  • J. R. Mercado
  • E. P. Guido
  • A. J. Sánchez-Sesma
  • M. Íñiguez
  • A. González
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

The objective of this paper is to find the relationship between the Blasius formula for friction factor and the Navier–Stokes Fractional equation. The renormalization that produces changes of scale of the boundary layer equations contains the essential hypothesis of the thinness of said layer, a characteristic which appears in all important outcomes, such as friction force and drag coefficient and gives rise to a multi-fractal description. A generalization of experimental results for the Blasius friction factor that is interpreted and generalized as a multi-fractal is obtained. Applying Hadamard functionals the friction factor is described as a fractional derivative whose order depends on the spatial occupancy index. Results are applied to the interactions between currents and boundaries (in rivers, deserts and hurricanes).

Keywords

Friction Force Friction Factor Fractional Derivative Turbulent Boundary Layer Boundary Layer Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barenblatt GI, Chorin AJ, Prostokishin VM (1997) Scaling laws for fully developed turbulent flow in pipes: discussion of experimental data. Proc Natl Acad Sci USA Appl Math 94:773–776CrossRefGoogle Scholar
  2. Clifford NJ, French JR, Hardisty J (1993) Turbulence, perspectives on flow and sediment transport. Sand transport response to fluctuating wind velocity, pp 304–334Google Scholar
  3. Landau LD, Lifshitz EM (1987) Fluid mechanics. Pergamon Press, Oxford, p 539Google Scholar
  4. Levi E (1989) El Agua según la Ciencia, Conacyt Ed. Castell Mexicana, MéxicoGoogle Scholar
  5. Mercado JR, (2010) Ecuación Blasius fraccional. Proceedings: Congreso Latinoamericano de Hidráulica, Punta del Este, Uruguay. Ref. Number 237Google Scholar
  6. Mercado JR, Ramírez J, Perea H, Íñiguez M (2009) La ecuación Navier-Stokes fraccional en canales de riego. Revista de Matemática: Teoría y Aplicaciones, (International Journal on Mathematics: Theory and Applications); RMTA-082-2009. (Submitted)Google Scholar
  7. Mercado JR, Olvera E, Perea H, Íñiguez M (2010) La ecuación Saint-Venant fraccional. Revista de Matemática: Teoría y Aplicaciones, (International Journal on Mathematics: Theory and Applications); RMTA-030-2010. (Submitted) Google Scholar
  8. Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–280CrossRefGoogle Scholar
  9. Riedi RH, Scheuring I (1997) Conditional and relative multifractal spectra. Fractals 5(1):153–168CrossRefGoogle Scholar
  10. Rouse H (1946) Elementary mechanics of fluids. Dover Publications, New York, p 376Google Scholar
  11. Zhang X (2011) Stochastic lagrangian particle approach to fractal Navier-Stokes equations, ArXiv: 1103.0131v1 [Math.PR]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. R. Mercado
    • 1
  • E. P. Guido
    • 1
  • A. J. Sánchez-Sesma
    • 1
  • M. Íñiguez
    • 1
  • A. González
    • 1
  1. 1.Instituto Mexicano de Tecnología del Agua, IMTAJiutepec, MorMexico

Personalised recommendations