Advertisement

Evaluation of a Temporary Repository of Radioactive Waste

  • Roberto González-Galán
  • Eduardo de la Cruz-Sánchez
  • Jaime Klapp-Escribano
  • Estela Mayoral-Villa
  • Nora Pérez-Quezadas
  • Salvador Galindo Uribarri
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

The confinement of radioactive waste (radionuclides) in underground installations has to take into account its influence on the environment, the solvent action and the waste groundwater drag. This work evaluates by computer simulations how radionuclides migrate through the subsurface of a typical site in Mexico. The simulations show preferential routes that the contaminant plume follows over time. Results indicate that the radionuclides flow is highly irregular and it is influenced by failures in the area and its interactions in the fluid–solid matrix. The obtained concentration of the radionuclide is as expected.

Keywords

Porous Medium Radioactive Waste Solid Matrix Mechanical Dispersion Radionuclide Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

J. Klapp thank ABACUS, CONACyT grant EDOMEX-2011-C01-165873.

References

  1. Bear J (1979) Dynamics of fluids in porous media. Dover Publications Inc, New York, p 764Google Scholar
  2. Coats KH, Smith BD (1964) Dead-end pore volume and dispersion in porous media. J Soc Petrol Eng 4:73–84Google Scholar
  3. Corapcioglu MY, Baehr AL (1987) A compositional multiphase model for groundwater contamination by petroleum products 1, Theoretical considerations. Water Resour Res 23(1):191–200CrossRefGoogle Scholar
  4. Choppin GR, Liljenzin JL, Rydberg J (2002) Radiochemistry and nuclear chemistry, Butterworth-Heinemann, ISBN 0750674636, 9780750674638, p 709Google Scholar
  5. Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalent for networks of discontinuous fractures. Water Resources Res 18(3):645–658CrossRefGoogle Scholar
  6. Luo S, Ku TL, Roback R, Murrell M, McLing TL (2000) In-situ radionuclide transport and preferential groundwater flows at INEEL (Idaho): decay-series disequilibrium studies. Geochim Cosmochim Acta 64:867–881CrossRefGoogle Scholar
  7. Neretnieks I (1980) Diffusion in the rock matrix: an important factor in radionuclide retardation? J Geophys Res 85(B8):4379–4397Google Scholar
  8. Pollock DW (1986) Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium. Water Resour Res 22(5):765–775CrossRefGoogle Scholar
  9. Rojas Martínez VP (1996) Un enfoque biológico sobre la migración del 226-Ra en los estratos someros subyacentes en el depósito de estériles en Peña Blanca Chihuahua. Tesis de Licenciatura FES- Zaragoza, UNAMGoogle Scholar
  10. Schwartz F, Smith L (1988) A continuum approach for modelling mass transport in fractured media. Water Resour Res 24(S):1360–1372CrossRefGoogle Scholar
  11. Walton JC (1994) Influence of evaporation on waste package environment and radionuclide release from a tuff repository. Water Resour Res 30:3479–3487CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roberto González-Galán
    • 1
  • Eduardo de la Cruz-Sánchez
    • 2
  • Jaime Klapp-Escribano
    • 2
    • 4
  • Estela Mayoral-Villa
    • 2
  • Nora Pérez-Quezadas
    • 3
  • Salvador Galindo Uribarri
    • 2
  1. 1.Facultad de CienciasUniversidad Autónoma del Estado de MéxicoEstado de MéxicoMéxico
  2. 2.Instituto Nacional de Investigaciones NuclearesCarretera México-Toluca s/nOcoyoacacMéxico
  3. 3.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  4. 4.Departamento de MatemáticasMexicoMexico

Personalised recommendations