Analysis of Transport Parameters for a Cr(VI) Contaminated Aquifer in México

  • Lázaro Raymundo Reyes-Gutiérrez
  • Ramiro Rodríguez-Castillo
  • Elizabeth Teresita Romero-Guzmán
  • José Alfredo Ramos-Leal
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

In the Buenavista area of Leon City, Mexico, Cr(VI) groundwater contamination was detected, originating from an industrial landfill with chromium compounds. A 2D vertical simulation model was established for the Buenavista study area. Laboratory and field data were incorporated into a finite element groundwater flow model and a solute transport model to analyze the transport parameters in the Buenavista shallow aquifer. A sensitivity analysis was performed to obtain values representative of the transport parameters (hydraulic conductivity [K], longitudinal, horizontal and vertical transverse dispersivities [αL, αTV], distribution coefficient [K d ], the initial concentration [Co] and pumping rates [Q]). This analysis allowed a good calibration of the model. The incorporation of the resulting set of parameters in the finite element model enabled the reproduction the observed contaminant plume in Buenavista close to 95 % match. The values obtained were αL = 50.0 m, αTV = 2.5 m, K d  = 0.007 mL/g, Co = 160 mg/L and Q = 100 m3/d. The sensitivity analysis indicated that the dispersion of the Cr(VI) plume is most sensitive to variations in hydraulic conductivity, the distribution coefficient, longitudinal and transverse dispersivity and pumping rates. In addition to the sensitivity analysis, it was observed that Q strongly affects the plume geometry.

Keywords

Hydraulic Conductivity Shallow Aquifer Transport Parameter Numerical Dispersion Vertical Hydraulic Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank Chemical Central for its open doors policy. To Miss. Ellen Sue Weiss by technical help in English review of manuscript and we wish to thank her.

References

  1. Armienta MA (1992) Contribución al estudio de los mecanismos de transporte del cromo en el acuífero de León Gto. Ph. D. Thesis, Mexico, UNAM, pp 213Google Scholar
  2. Bahr JM, Rubin J (1987) Direct comparison of kinetic and local equilibrium formulations for solute transport affected by surface reactions. Water Resour Res 23(3):438–452CrossRefGoogle Scholar
  3. Basak P, Murty VVN (1979) Determination of hydrodynamic dispersion coefficients using “inverf”. J Hydrol 41:43–48CrossRefGoogle Scholar
  4. Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New YorkGoogle Scholar
  5. Castelán RA, Villegas CI (1995) Control estratigráfico de la dispersión de compuestos de cromo en la zona de Buenavista, Edo. de Guanajuato. Bachelor Thesis in Geology. ESIA-IPN, Mexico, p 70Google Scholar
  6. Daus T, Frind EO, Sudicky EA (1985) Comparative error analysis in finite element formulations of the advection-dispersion equation. Adv Water Resour 8(2):86–95CrossRefGoogle Scholar
  7. Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology. John Wiley and Sons, New YorkGoogle Scholar
  8. Eberhardt C, Grathwohl P (2002) Time scales of organic contaminant dissolution from complex source zones: coal tar pools versus blobs. J Contam Hydrol 59(1–2):45–66CrossRefGoogle Scholar
  9. Garabedian SP, LeBlanc DR, Gelhar LW, Celia MA (1991) Large scale natural tracer test in sand and gravel, Cape Cod. Massachusetts Water Resour Res 27(5):911–924CrossRefGoogle Scholar
  10. Gelhar LW, Welty C, Rehfeldt KR (1992) Critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974CrossRefGoogle Scholar
  11. Grathwohl P (1998) Diffusion in natural porous media. Kluwer Academic Publishers, DordrechtGoogle Scholar
  12. Grove DB, Stollenwerk KG (1985) Modeling the rate-controlled sorption of hexavalent chromium. Water Resour Res 21:1703–1709CrossRefGoogle Scholar
  13. Hill MC (1998) Methods and guidelines for effective model calibration, with application to: UCODE, a computer code for universal inverse modeling, and MODFLOWP, a computer code for inverse modeling with MODFLOW. U.S. Geological Survey Water-Resources Investigations Report 98–4005, p 90Google Scholar
  14. Istok J (1989) Groundwater modeling by the finite element method. [Water resources monograph 13]. American Geophysical Union, WashingtonGoogle Scholar
  15. Jiao JJ (1993) Data analysis methods for determining two-dimensional dispersive parameters. Groundwater 13(1):57–62CrossRefGoogle Scholar
  16. Klenk ID, Grathwohl P (2002) Transverse vertical dispersion in groundwater and the capillary fringe. J Contam Hydrol 58(1–2):111–128CrossRefGoogle Scholar
  17. Konikow LF (1977) Modeling chloride movement in the alluvial aquifer at the Rocky Mountain Arsenal. U.S. Geological Survey Water-SupplyPaper 2044, pp 43Google Scholar
  18. Langmuir D (1997) Aqueous Environmental Geochemistry. Prentice-Hall Inc, Englewood CliffsGoogle Scholar
  19. McElwee CD (1982) Sensitivity analysis and the ground-water inverse problem. Gound Water 20(6):723–735CrossRefGoogle Scholar
  20. McElwee CD (1987) Sensitivity analysis of groundwater models. In: Bear J, Corapcioglu MY (eds) Advances in transport phenomena in porous media, NATO advanced study institute series, pp 751–817Google Scholar
  21. Mercer JW, Faust CR (1976) The application of finite element techniques to immiscible flow in porous media, paper presented at the international conference on finite element. In: Water Resources, Princeton University Princeton, JulyGoogle Scholar
  22. Ogata A, Banks RB (1961) A solution of the differential equation of longitudinal dispersion in porous media. U.S. Geological Survey Prof. Papers, 411-a, pp. 7Google Scholar
  23. Pickens JF, Lennox WC (1976) Numerical simulation of waste movement on steady groundwater flow system. Water Resour Res 12(2):171–180CrossRefGoogle Scholar
  24. Pinder GF (1973) A galerkin-finite element simulation of groundwater contamination on Long Island. New York Water Resour Res 9(6):1657–1669CrossRefGoogle Scholar
  25. Reyes-Gutiérrez LR (1998) Parámetros que controlan la dispersión de compuestos de Cr en un acuífero de conductividad hidráulica variable. Master Thesis (Geophysics). UNAM, México D. F. p 130Google Scholar
  26. Reyes-Gutiérrez LR (2007) Análisis de un sistema de remediación acuífera mediante bombeo y tratamiento en Buenavista, Guanajuato. Ph. Degree Thesis Geophysics). UNAM, México D. F. p 192Google Scholar
  27. Rivett MO, Feenstra S, Cherry JA (2001) A controlled field experiment on groundwater contamination by a multicomponent DNAPL: creation of the emplaced-source and overview of dissolved plume development. J Contam Hydrol 49(1–2):111–149CrossRefGoogle Scholar
  28. Rodríguez CR, Armienta MA, Villanueva S, Díaz P, González MT (1991) Estudio hidrogeoquímico y modelación matemática del acuífero del Río Turbio para definir acciones encaminadas a proteger de contaminantes la fuente de abastecimiento de la Cd. de León, Gto. Technical Report il. IGF UNAM, CNA SARH. , p 140, June 1991Google Scholar
  29. Rodríguez CR, Armienta MA (1995) Distribución de cromo en suelos y agua subterránea en el entorno de la empresa Química Central. Technical Report. IGF-UNAM. México D. F. p 27Google Scholar
  30. Robertson WD, Cherry JA, Sudicky EA (1991) Groundwater contamination from two small septic system on sands aquifers. Groundwater 29:82–92CrossRefGoogle Scholar
  31. Voss IC (1984) A finite-element simulation model for saturated-unsaturated. Fluid-density-dependent groundwater flow with energy transport or chemically-reactive single-species solute transport. U.S. Geological Survey, Water-Resources Investigations Report 84-4369, p 391Google Scholar
  32. Wagner BJ, Gorelick SM (1986) A statistical methodology for estimating transport parameters: theory and applications to a one-dimensional advective-dispersive systems. Water Resour Res 22(8):303–1315CrossRefGoogle Scholar
  33. Wagner BJ, Gorelick SM (1987) Optimal groundwater quality management under parameter uncertainty. Water Resour Res 23(7):1162–1174CrossRefGoogle Scholar
  34. Zheng C, Bennett GD (2002) Applied contaminant transport modeling, 2nd edn. Jhon Wiley and Sons Inc, New York 621Google Scholar
  35. Zienkiewicz OC (1977) The finite element method in engineering science. McGraw-Hill, London 865Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lázaro Raymundo Reyes-Gutiérrez
    • 1
  • Ramiro Rodríguez-Castillo
    • 2
  • Elizabeth Teresita Romero-Guzmán
    • 1
  • José Alfredo Ramos-Leal
    • 3
  1. 1.Instituto Nacional de Investigaciones Nucleares ININ MexicoMexico
  2. 2.Instituto de GeofísicaUniversidad Nacional Autónoma de México, UNAMMexicoMexico
  3. 3.Instituto Potosino de Investigación Científica y Tecnológica A.C., IPICyTSan Luis PotosíMexico

Personalised recommendations