Profile Deformation of a Non Cohesive Granular Material in an Accelerated Box

  • V. S. Álvarez Salazar
  • A. Pérez Terrazo
  • A. Medina
  • C. A. Vargas
Part of the Environmental Science and Engineering book series (ESE)


When a dry non cohesive granular material confined in a box in such a way that the initial profile of the free surface is a horizontal plane and it is accelerated uniformly, the final equilibrium profile changes to a tilted straight plane whose slope is a function of the magnitude of the acceleration, the magnitude of the gravity acceleration and the friction coefficient of the granular material. Here are presented a simple model, based on the Coulomb’s law, that describes correctly such a deformation and some experiments that back the theoretical predictions.


Free Surface Friction Coefficient Granular Material Mustard Seed Initial Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Álvarez VS (2011) Fricción en silos y vehículos acelerados con carga granular. Master Science Thesis, Higher School of Electric and Mechanics Engineering, IPNGoogle Scholar
  2. Aradian A, Raphaël É, de Gennes PG (2002) Surface flows of granular materials: a short introduction to some recent models. C R Physique 3:187–196CrossRefGoogle Scholar
  3. Bernoulli D (1968) Hydrodynamics (Dover, New York) translation by Thomas Carmody from hydrodynamica as published by Johann Reinhold Dulseker at Strassburg in 1738Google Scholar
  4. Fleissner FD, Alessandro V, Schiehlen W, Eberhard P (2009) Sloshing cargo in silo vehicles. J Mech Sci Tech 23:968–973CrossRefGoogle Scholar
  5. Krim J (2002) Friction at macroscopic and microscopic length scales. Am J Phys 70:890–897CrossRefGoogle Scholar
  6. Medina A, Luna E, Alvarado R, Treviño C (1995) Axisymmetrical rotation of a sand heap. Phys Rev E 51:4621–4625CrossRefGoogle Scholar
  7. Rumold W (2001) Modeling and simulation of vehicles carrying liquid cargo. Multibody Syst Dyn 5:351–374CrossRefGoogle Scholar
  8. Shinbrot T, Duong NH, Hettenbach M, Kwan L (2007) Coexisting static and flowing regions in a centrifuging granular heap. Granul Matter 9:295–307CrossRefGoogle Scholar
  9. Vavrek ME, Baxter GW (1994) Surface shape of a spinning bucket of sand. Phys Rev E 50:R3353–3356CrossRefGoogle Scholar
  10. White FM (1994) Fluid mechanics, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  11. Yamane K, Nakagawa M, Altobelli SA, Tanaka T, Tsuji Y (1998) Steady particulate flows in a horizontal rotating cylinder. Phy Fluids 10:1419–1427CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. S. Álvarez Salazar
    • 1
  • A. Pérez Terrazo
    • 1
  • A. Medina
    • 1
  • C. A. Vargas
    • 2
  1. 1.Instituto Politécnico Nacional, SEPI ESIME UAMexicoMexico
  2. 2.Departamento de Ciencias BasicasUniversidad Autónoma Metropolitana-AzcapotzalcoMexicoMexico

Personalised recommendations