Advertisement

A Discrete Model for Simulating Gas Displacement in Fractured Porous Media

  • S. Pérez-Morales
  • A. Méndez-Ancona
  • M. Ortega-Rocha
  • R. Islas-Juárez
  • R. Herrera-Solís
  • G. Domínguez-Zacarías
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

A physically based approach to numerical miscible displacement model in a matrix-fracture system was developed. Matrix-fracture configuration was divided in two different domains: fractured media was considered as a free flow channel. Then Navier–Stokes, continuity and convection–diffusion equations were also employed. The matrix is solved with Darcy mass conservation and Diffusion for porous media. The system equation is solved about the scheme of finite differential method and finite volume.

Keywords

Porous Medium Discrete Fracture Network Fracture Porous Medium Molecular Diffusion Coefficient Miscible Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Al-Yaarubi AH, Pain CC, Grattoni CA, Zimmerman RW (2005) Navier-Stokes simulations of fluid flow through a rough fracture, in dynamics of fluids and transport in fractured rock. Geophys Monogr Ser162, edited by B. Faybishenko, P. A. Witherspoon, and J Gale pp. 55–64, AGU, WashingtonGoogle Scholar
  2. Brush DJ, Thomson NR (2003) Fluid flow in synthetic rough- walled fractures: Navier-Stokes, Stokes, and local cubic law simulations. Water Resour Res 39(4):1085CrossRefGoogle Scholar
  3. Cardenas MB, Slottke DT, Ketcham RA, Sharp JM (2007) Navier-Stokes flow and transport simulations using real fractures shows heavy tailing due to eddies. Geophys Res Lett 34:1–6Google Scholar
  4. Chao-Ying J, Heinz H (2004) An experimental study of miscible displacements in porous media with variation of fluid density and viscosity. Transp Porous Med 54:125–144CrossRefGoogle Scholar
  5. Farajzadeh R et al (2007) Numerical simulation of density-driven natural convection in porous media with application for CO2 injection projects. Int J Heat Mass Transf 50:5054–5064CrossRefGoogle Scholar
  6. Firoozabadi A (2000) Recovery Mechanisms in Fractured Reservoir and Field Performance. JCPT 39:13CrossRefGoogle Scholar
  7. Hauge VL, Aarnes JE (2009) Modeling of two-phase flow in fractured porous media on unstructured non-uniformly coarsened grids. Transp Porous Med 77(3):373–398CrossRefGoogle Scholar
  8. Hoteit H, Firoozabadi a (2005) Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media. Water Resour Res 41(11):1–15CrossRefGoogle Scholar
  9. Hoteit H, Firoozabadi A, Engineering R (2009) Numerical modeling of diffusion in fractured media for gas-injection and -recycling schemes. SPE J 323–337Google Scholar
  10. Huang Z, Yao J, Li Y, Wang C, Lv X (2010) Numerical calculation of equivalent permeability tensor for fractured vuggy porous media based on homogenization theory. Global Science Press, 1–25. doi:  10.4208/cicp.150709.130410a
  11. Jamshidnezhad M, Montazer Rahmati M (2004) Theoretical and experimental investigations of miscible displacement in fractured porous media. Transp Porous Med 57(1):59–73CrossRefGoogle Scholar
  12. Jamshidnezhad M, Montazer-Rahmati M, M and Sajjadian VA (2003) Experimental Study of miscible fluid injection in fractured porous media. J Oleo Sci 52:335–338CrossRefGoogle Scholar
  13. Jamshidnezhad M, Montazer Rahmati M, Sajjadian VA (2004) Performance of Iranian naturally fractured cores under miscible displacement experiments. J Jpn Petrol Inst 47:59–63CrossRefGoogle Scholar
  14. Kim I, Lindquist WB, Durham WB (2003) Fracture flow simulation using a finite-difference lattice Boltzmann method. Phys Rev E 67:046708CrossRefGoogle Scholar
  15. Le Bars M, Grae Worster M (2006) Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J Fluid Mech 550:149–173CrossRefGoogle Scholar
  16. Moctezuma A, Luna E, Serrano E, Domínguez-Zacarías G. One Mathematical model in Fracture-Matrix system for miscible displacement.Manuscript number EGY-D-10-00350 2010. Número de Registro 03-2010_112211414700-01Google Scholar
  17. Reichenberger V, Jakobs H, Bastian P, Helmig R (2006) A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv Water Resour 29(7):1020–1036CrossRefGoogle Scholar
  18. Rogerson A, Meiburg E (1993) Numerical simulation of miscible displacement processes in porous media flows under gravity. Phys Fluids A 5(11):2644–2660CrossRefGoogle Scholar
  19. Ruith M, Meiburg E (2000) Misicible rectilinear displacement with gravity averride. Part I homogeneous porous medium. J Fluid Mech 420:225–257CrossRefGoogle Scholar
  20. Slobod RL, Howlett WE (1964) The effects of gravity segregation in studies of miscible displacement in vertical unconsolidated porous media. Soc Petroleum Eng J 1-8Google Scholar
  21. Tan C-T, Firoozabadi A (1995a) Theoretical analysis of miscible displacement in fractured porous media by a one-dimensional model: part i-theory. J Can Petroleum Technol 34:17–27Google Scholar
  22. Tan C-T, Firoozabadi A (1995b) Theoretical analysis of miscible displacement in fractured porous media by a one-dimensional model: Part II—features. J Can Petroleum Technol 34:28–35Google Scholar
  23. Thompson JL, Mungan N (1969) A Laboratory study of gravity drainage in fractured systems under miscible conditions. Soc Petroleum Eng J 2232:247–254Google Scholar
  24. Trivedi J, Babadagli T (2006) Efficiency of miscible displacement in fractured porous media. In: Proceedings of SPE Western Regional/AAPG Pacific Section/GSA Cordilleran Section Joint Meeting. SPE doi:  10.2523/100411-MS
  25. Trivedi JJ, Babadagli T (2008a) Experimental and numerical modeling of the mass transfer between rock matrix and fracture. Chem Eng J 146:194–204CrossRefGoogle Scholar
  26. Trivedi JJ, Babadagli T (2008b) Scaling miscible displacement in fractured porous media using dimensionless groups. J Petrol Sci Eng 61:58–56CrossRefGoogle Scholar
  27. Warren JE, Root PJ (1963) The Behavior of naturally fractured reservoirs. Soc Petroleum Eng J 426:245–255Google Scholar
  28. Wit De A (2004) Miscible density fingering of chemical fronts in porous media: Nonlinear solutions. Phys Fluid 16(1):163–175CrossRefGoogle Scholar
  29. Wu YS, Liu HH, Bodavarsson GS, Zellmer KE (2001) A triple-continuum approach for modeling flow and transport processes in fractured rock. Lawrence Berkley National Laboratory 1-57Google Scholar
  30. Y shu Wu, Qin G (2009) A generalized numerical approach for modeling multiphase flow and transport in fractured porous media introduction. Commun Comput Phys 6(1):85–108Google Scholar
  31. Zakirov SN, Shandrygin AN, Segin TN (1991) Miscible displacement of fluids within fractured porous reservoirs. SPE 22942Google Scholar
  32. Zhang J Frigaard IA (2006) Dispersion effects in the miscible displacement of two fluids in a duct of large aspect. J Fluid Mech 549:225–251Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Pérez-Morales
    • 1
  • A. Méndez-Ancona
    • 1
  • M. Ortega-Rocha
    • 1
  • R. Islas-Juárez
    • 2
  • R. Herrera-Solís
    • 2
  • G. Domínguez-Zacarías
    • 3
  1. 1.Región Sur, Exploración y Producción, Instituto Mexicano del Petróleo, Periférico Carlos Pellicer CámaraVillahermosaMexico
  2. 2.Sede, Exploración y ProducciónMexicoMexico
  3. 3.Programa de Investigación de Recuperación HidrocarburosMexicoMexico

Personalised recommendations