Looking for Gold: Catering for Mathematically Gifted Students Within and Beyond ZDM

  • Gilah C. Leder
Part of the Advances in Mathematics Education book series (AME)


ZDM—The International Journal on Mathematics Education has a forty year long history of sustained publications. There is pride in the Journal’s tradition of “publication of themed issues that aim to bring the state-of-the-art on central sub-domains within mathematics education” (Kaiser and Sriraman 2010, p. 143). In this chapter I trace the scope and themes of ZDM publications in which the education and needs of mathematically gifted students are discussed and compare the findings with those reported in the broader mathematics education research literature.


Mathematics Education Mathematics Education Research Mathematics Student Mathematical Creativity Gifted Child 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson, I., van Asch, B., & van Lint, J. (2004). Discrete mathematics in the high school curriculum. ZDM, 36(3), 105–116. CrossRefGoogle Scholar
  2. Arbaugh, F., Herbel-Eisenmann, B., Ramirez, N., Knuth, E., Kranendonk, H., & Quander, J.R. (2010). Linking research & practice. The NCTM research agenda conference report. Reston: National Council of Teachers of Mathematics. Google Scholar
  3. Barbeau, E. J., & Taylor, P. J. (Eds.) (2009). Challenging mathematics in and beyond the classroom. New York: Springer. Google Scholar
  4. Borland, J. H. (2009). Myth 2: The gifted constitute 3% to 5% of the population. Moreover, giftedness equals high IQ, which is a stable measure of aptitude. Gifted Child Quarterly, 53(4), 236–238. CrossRefGoogle Scholar
  5. Braathe, H. J., & Ongstad, S. (2001). Egalitarianism meets ideologies of mathematical education-instances from Norwegian curricula and classrooms. ZDM, 33(5), 1–11. CrossRefGoogle Scholar
  6. Ching, T. P. (1997). An experiment to discover mathematical talent in a primary school in Kampong Air. ZDM, 29(3), 94–96. CrossRefGoogle Scholar
  7. Christou, C., Mousoulides, N., Pittalis, M., Pitta-Pantazi, D., & Sriraman, B. (2005). An empirical taxonomy of problem posing processes. ZDM, 37(3), 149–158. CrossRefGoogle Scholar
  8. Colangelo, N., & Assouline, S. (2009). Acceleration: Meeting the academic and social needs of students. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 1085–1098). Dordrecht, The Netherlands: Springer. CrossRefGoogle Scholar
  9. Colangelo, N., & Davis, G. (Eds.) (2003). The handbook of gifted education. Boston: Allyn & Bacon. Google Scholar
  10. Cooper, C. R. (2009). Myth 18: It is fair to teach all children the same way. Gifted Child Quarterly, 53(4), 283–285. CrossRefGoogle Scholar
  11. Cropley, A. J., & Urban, K. K. (2000). Programs and strategies for nurturing creativity. In K. A. Heller, F. J. Mönks, R. J. Sternberg, & R. F. Subotnik (Eds.) International handbook of giftedness and talent (pp. 485–498). Oxford: Elsevier. Google Scholar
  12. Davis, G. A, & Rimm, S. B. (2004). Education of the gifted and talented. Boston: Pearson Education Press. Google Scholar
  13. Doorman, M., Drijvers, P., Dekker, T., van den Heuvel-Panhiuzen, M., de Lange, J., & Wijers, M. (2007). Problem solving as a challenge for mathematics education in the Netherlands. ZDM, 39, 405–418. CrossRefGoogle Scholar
  14. Elia, I., van den Heuvel-Panhiuzen, M., & Kolovou, A. (2009). Exploring strategy use and strategy flexibility in non-routine problem solving by primary school high achievers in mathematics. ZDM, 41(5), 605–618. CrossRefGoogle Scholar
  15. Friedman-Nimz, R. (2009). Myth 6: Cosmetic use of multiple selection criteria. Gifted Child Quarterly, 53(4), 248–250. CrossRefGoogle Scholar
  16. Freiman, V., Vézina, N., & Gandaho, I. (2005). New Brunswick pre-service teachers communicate with school children about mathematics problems: CAMI project. ZDM, 37(3), 178–189. CrossRefGoogle Scholar
  17. Gallagher, S. A. (2009). Myth 19: Is advance placement an adequate program for gifted students? Gifted Child Quarterly, 53(4), 286–288. CrossRefGoogle Scholar
  18. Geake, J. G. (2009). Neuropsychological characteristics of academic and creative giftedness. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 1085–1098). Dordrecht, The Netherlands: Springer. Google Scholar
  19. Gentry, M. (2009). Myth 11: A comprehensive continuum of gifted education and talent development services. Discovering, developing, and enhancing young people’s gifts and talents. Gifted Child Quarterly, 53(4), 262–265. CrossRefGoogle Scholar
  20. Gifted Child Quarterly (n.d.). About the journal. Retrieved May 26, 2010 from
  21. Haylock, D. (1997). Recognising mathematical creativity in schoolchildren. ZDM, 29(3), 68–74. CrossRefGoogle Scholar
  22. Heinze, A., Marschick, F., & Lipowsky, F. (2009). Addition and subtraction of three-digit numbers: Adaptive strategy use and the influence of instruction in German third grade. ZDM, 41(5), 591–604. CrossRefGoogle Scholar
  23. Heller, K. A., Monks, F., Sternberg, R. J., & Subotnik, R. F. (Eds.) (2000). The international handbook of giftedness and talent. Oxford, UK: Elsevier Science. Google Scholar
  24. Hertberg-Davis, H. (2009). Myth 7: Differentiation in the regular classroom is equivalent to gifted programs and is sufficient: Classroom teachers have the time, the skill, and the will to differentiate adequately. Gifted Child Quarterly, 53(4), 251–253. CrossRefGoogle Scholar
  25. Iversen, S. M., & Larson, C. J. (2006). Simple thinking using complex maths v complex thinking using simple math—A study using model eliciting activities to compare students’ abilities in standardized tests to their modelling abilities. ZDM, 38(3), 281–292. CrossRefGoogle Scholar
  26. Kaiser, G. (2006). On the occasion of Gerhard König’s retirement as editor-in-chief of ZDM and MATHDI. ZDM, 38(1), 79–81. CrossRefGoogle Scholar
  27. Kaiser, G. (2007). Editorial. ZDM, 39, 1–2. CrossRefGoogle Scholar
  28. Kaiser, G., & Sriraman, B. (2010). Advances in mathematics education: New book series connected to ZDM—The International Journal of Mathematics Education. ZDM, 42, 143–144. CrossRefGoogle Scholar
  29. Käpnick, F. (1996). Mathematically interested and talented primary school children—The Neubrandenburg project. ZDM, 28(5), 136–142. Google Scholar
  30. Kießwetter, K., & Nolte, M. (1996). Introduction to the following series of articles discussing furthering of the gifted in primary education. ZDM, 28(5), 129–130. Google Scholar
  31. König, G. (1996). Bibliography “Giftedness and promotion of gifted primary grade students”. ZDM, 28(5), 158–163. Google Scholar
  32. Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. Chicago: The University of Chicago Press. Google Scholar
  33. Leder, G. C. (2007). Using large scale data creatively: Implications for instruction. ZDM, 39(1–2), 87–94. CrossRefGoogle Scholar
  34. Leikin, R., Berman, A., & Koichu, B. (Eds.) (2009). Creativity in mathematics and the education of gifted students. Rotterdam, The Netherlands: Sense Publishers. Google Scholar
  35. Leung, S. S. (1997). On the role of creative thinking in problem solving. ZDM, 29(3), 81–85. CrossRefGoogle Scholar
  36. Monks, F. J., Heller, K. A., & Passow, A. H. (2000). The study of giftedness: Reflections on where we are and where we are going. In K. A. Heller, F. J. Mönks, R. J. Sternberg, & R. F. Subotnik (Eds.), International handbook of giftedness and talent (pp. 839–863). Oxford: Elsevier. Google Scholar
  37. Nolte, M., & Kießwetter, K. (1996). Can and should mathematically gifted children be identified and promoted already at primary school? ZDM, 28(5), 143–157. Google Scholar
  38. Pehkonen, E. (1997). The state-of-art in mathematical creativity. ZDM, 29(3), 63–67. CrossRefGoogle Scholar
  39. Perry, B. (2007). Australian teachers’ views of effective mathematics teaching and learning. ZDM, 39(4), 271–286. CrossRefGoogle Scholar
  40. Phillipson, S. N., & Callingham, R. (2009). Understanding mathematical giftedness: Integrating self, action repertoires and the environment. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 1085–1098). Dordrecht, The Netherlands: Springer. Google Scholar
  41. Piatek-Jimenez, K. (2008). Images of mathematicians: A new perspective on the shortage of women in mathematical careers. ZDM, 40(4), 636–646. CrossRefGoogle Scholar
  42. Plucker, J., & Zabelina, D. (2009). Creativity and interdisciplinarity: One creativity or many creativities? ZDM, 41(1–2), 5–11. CrossRefGoogle Scholar
  43. Polya, G. (1954). Induction and analogy in mathematics. Princeton: Princeton University Press. Google Scholar
  44. Presmeg, N. (2009). Mathematics education research embracing arts and sciences. ZDM, 41(1–2), 131–141. CrossRefGoogle Scholar
  45. Reiss, K. & Törner, G. (2007). Problem solving in the mathematics classroom: The German perspective. ZDM, 39(5–6), 431–441. CrossRefGoogle Scholar
  46. Rogers, K. B. (2007). Lessons learned about educating the gifted and talented: A synthesis of the research on educational practice. Gifted Child Quarterly, 54(4), 382–394. CrossRefGoogle Scholar
  47. Schumann, H. (2003). A dynamic approach to ‘simple’ algebraic curves. ZDM, 35(6), 301–316. CrossRefGoogle Scholar
  48. Shaughnessy, J. M. (2010). Linking research and practice: The research agenda project. Journal for Research in Mathematics Education, 41(3), 212–215. Google Scholar
  49. Shaughnessy, J. M., & Persson, R. (2009). Observed trends and needed trends in gifted education. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 1285–1291). Dordrecht, The Netherlands: Springer. CrossRefGoogle Scholar
  50. Shavinina, L. V. (Ed.) (2009). International handbook on giftedness. Dordrecht, The Netherlands: Springer. Google Scholar
  51. Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM, 29(3), 75–80. CrossRefGoogle Scholar
  52. Singer, M. (2001). Information structuring—A new way of perceiving the content of learning. ZDM, 33(6), 204–217. CrossRefGoogle Scholar
  53. Sowell, E. (1993). Programs for mathematically gifted students: A review of empirical research. Gifted Child Quarterly, 37, 124–129. CrossRefGoogle Scholar
  54. Sprengel, H. (1996). Promotion of mathematically gifted primary school children. ZDM, 28(5), 131–135. Google Scholar
  55. Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM, 41(1–2), 13–27. CrossRefGoogle Scholar
  56. Sriraman, B., & Pezzuli, M. (2005). Balancing mathematics education research and the NCTM standard. ZDM, 37(5), 431–436. CrossRefGoogle Scholar
  57. Star, J. R., & Newton, K. J. (2009). The nature and development of experts’ strategy flexibility for solving equations. ZDM, 41(5), 557–567. CrossRefGoogle Scholar
  58. Sternberg, R. J. (Ed.). (2000). Handbook of intelligence. New York: Cambridge University Press. Google Scholar
  59. Stoeger, H. (2009). The history of giftedness research. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 17–38). Dordrecht, The Netherlands: Springer. CrossRefGoogle Scholar
  60. Subhi-Yamin, T. (2009). Gifted education in the Arabian gulf and the middle Eastern regions: History, current practices, new directions, and future trends. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 1463–1490). Dordrecht, The Netherlands: Springer. CrossRefGoogle Scholar
  61. Swanson, J. D. (2006). Breaking through assumptions about low-income, minority gifted students. Gifted Child Quarterly, 50(1), 11–25. CrossRefGoogle Scholar
  62. Szendrei, J. (2007). When the going gets tough, the tough gets going problem solving in Hungary, 1970–2007: Research and theory, practice and politics. ZDM, 39(5–6), 443–458. CrossRefGoogle Scholar
  63. VanTassel-Baska, J. (2000). Theory and research on curriculum development for the gifted. In K. A. Heller, F. J. Mönks, R. J. Sternberg, & R. F. Subotnik (Eds.), International handbook of giftedness and talent (pp. 345–365). Oxford: Elsevier. Google Scholar
  64. Wallace, B., & Maker, C. J. (2009). DISCOVERY/TASC: An approach to teaching and learning that is inclusive yet maximises opportunities for differentiation according to pupils’ needs. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 1113–1141). Dordrecht, The Netherlands: Springer. CrossRefGoogle Scholar
  65. Worrell, F. C. (2009). Myth 4: A single test score or indicator tells us all we need to know about giftedness. Gifted Child Quarterly, 53(4), 242–244. CrossRefGoogle Scholar
  66. Weinert, F. E. (2000). Foreword. In K. A. Heller, F. J. Mönks, R. J. Sternberg, & R. F. Subotnik (Eds.), International handbook of giftedness and talent (pp. xi–xiii). Oxford: Elsevier. Google Scholar
  67. Wieczerkowski, W., Cropley, A. J., & Prado, T. M. (2000). Nurturing talents/gifts in mathematics. In K. A. Heller, F. J. Mönks, R. J. Sternberg, & R. F. Subotnik (Eds.), International handbook of giftedness and talent (pp. 413–425). Oxford: Elsevier. Google Scholar
  68. ZDM (n.d.). Detailed aims and scope of the journal. Retrieved May 26, 2010 from
  69. Ziegler, A., & Heller, K. A. (2000). Conceptions of giftedness from a meta-theoretical perspective. In K. A. Heller, F. J. Mönks, R. J. Sternberg, & R. F. Subotnik (Eds.), International handbook of giftedness and talent (pp. 3–21). Oxford: Elsevier. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Monash UniversityMelbourneAustralia

Personalised recommendations