Mathematics Education for Adults: Can It Reduce Inequality in Society?

Part of the Advances in Mathematics Education book series (AME)

Abstract

Adult education in mathematics is considered from a number of perspectives. It is a key element in the general concept of lifelong learning. Lifelong learning is essential in a rapidly changing economic and technological world. For example, quickly changing production conditions in companies lead to quickly changing demands on skills possessed by company employees. Skills that are taught in schools and institutions of vocational education also need to be adapted to fulfil the requirements of a changing job environment. Lifelong learning is a process that corrects omissions in basic education. In this sense, lifelong learning is viewed as an opportunity to reduce societal inequalities. However, not only is economic life changing, but conditions within society are changing, too. In this essay it will be argued that lifelong learning is undoubtedly a prerequisite for making democratic participation possible for all members of a society. All adult learners have a learning history that is intimately connected with their experience of learning at school. The school experience has a great influence on learning as adults, particularly if the adult is forced to, acquire new skills because of unemployment. In this chapter we begin with a discussion of the general conditions of lifelong learning. We continue with an account of the role played by mathematics in societies. We then conclude with problems faced by adult learners of mathematics.

Keywords

Mathematics Education Lifelong Learning Mathematical Object Mathematics Learning Adult Education 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aspin, D. & Chapman, J. (2001). Toward a philosophy of lifelong learning. In D. Aspin, J. Chapman, M. Hatton, & Y. Sawano (Eds.), International handbook of lifelong learning (pp. 3–33). Dordrecht: Kluwer Academic Publishers. CrossRefGoogle Scholar
  2. Aspin, D., Chapman, J., Hatton, M., & Sawano, Y. (2001). Introduction and overview. In D. Aspin, J. Chapman, M. Hatton, & Y. Sawano (Eds.), International handbook of lifelong learning (pp. XVIII–XLV). Dordrecht: Kluwer Academic Publishers. CrossRefGoogle Scholar
  3. Benn, R. (1997). Adults count too: Mathematics for empowerment. Leicester: NIACE. Google Scholar
  4. Bishop, A. J. (1991). Mathematical enculturation. A cultural perspective on mathematics education. Dordrecht: Kluwer Academic Publishers. Google Scholar
  5. Damasio, A. R. (1999). The feeling of what happens. New York: Harcout Brace & Company. Google Scholar
  6. David, E. E. (1984). Renewing U.S. mathematics: Critical resource for the future. Notices of the American Mathematical Society, 31(5), 435–466. Google Scholar
  7. Dörfler, W. (2002). Instances of diagrammatic reasoning. Preprint. Austria: University of Klagenfurt. Google Scholar
  8. Evans, J. (1999). Adult maths and everyday life: Building bridges, facilitating transfer. In M. Groenestijn & D. Coben (Eds.), Mathematics as part of lifelong learning (pp. 77–84). London: Goldsmiths University of London. Google Scholar
  9. Evans, J. (2000). Adults’ mathematical thinking and emotions: A study of numerate practices. London: RoutledgeFalmer. Google Scholar
  10. Evans, J. & Thornstad, I. (1994). Mathematics and numeracy in the practice of critical citizenship. In D. Coben (Ed.), ALM 1: Proceedings of the inaugural conference of Adults Learning Mathematics—A Research Forum (pp. 64–70). London: University of London. Google Scholar
  11. Evans, J. & Rappaport, I. (1998). Using statistics in everyday life: From barefoot statisticians to critical citizenship. In D. Dorling & S. Simpson (Eds.), Statistics in society: The arithmetic of politics (pp. 71–77). London: Arnold. Google Scholar
  12. Fischer, R. (1999). Technologie, mathematik und ewußtsein der gesellschaft. In G. Kadunz et al. (Eds.), Mathematische bildung und neue technologien (pp. 85–102). Stuttgart-Leipzig: B.G.Teubner. Google Scholar
  13. FitzSimons, G., Jungwirth, H., Maaß, J., & Schlöglmann, W. (1996). Adults and mathematics. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick & C. Laborde (Eds.), International handbook of mathematical education (pp. 753–784). Dordrecht: Kluwer Academic Publishers. Google Scholar
  14. FitzSimons, G., Coben, D., & O’Donoghue, J. (2003). Lifelong mathematics education. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Second international handbook of mathematics education (pp. 103–142). Dordrecht: Kluwer Academic Publishers. CrossRefGoogle Scholar
  15. Frankenstein, M. (1990). Incorporating race, gender, and class issue into a critical mathematics literacy curriculum. Journal of Negro Education, 59(3), 336–347. CrossRefGoogle Scholar
  16. Hannula, M. (1998). Changes of beliefs and attitudes. In E. Pehkonen & G. Törner (Eds.), The state-of-art in mathematics-related belief research: Results of the MAVI activities. Research Report 184 (pp. 198–222). Finland: University of Helsinki. Google Scholar
  17. Heintel, P. (1992). Skizzen zur “technologischen formation”. In W. Blumberger & D. Nemeth (Eds.), Der technologische Imperativ (pp. 267–308). München-Wien: Profil. Google Scholar
  18. Hülsmann, H. (1985). Die technologische formation. Berlin: Verlag Europäische Perspektiven. Google Scholar
  19. Ingleton, C. & O’Regan, K. (2002). Recounting mathematical experiences: Emotions in mathematics learning. Literacy & Numeracy Studies, 11(2), 95–107. Google Scholar
  20. Jungwirth, H., Maasz, J., & Schlöglmann, W. (1995). Abschlussbericht zum forschungsprojekt mathematik in der weiterbildung. Austria: Linz. Google Scholar
  21. Klafki, W. (1975). Studien zur bildungstheorie und didaktik: Durch ein kritisches vorwort ergänzte auflage. Weinheim/Basel: Beltz Verlag. Google Scholar
  22. Lave, J. (1988). Cognition in practice. Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  23. Lave, J. & Wenger, E. (1991). Situated learning. Legitimate peripheral participation. Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  24. Lindenskov, L. (1996). Kursundersogelse pa AMU—centre om alment—faglig kompetence I matematik. In T. Wedege (Ed.), Faglig profil I matematik (pp. 73–84). Copenhagen: Arbedsmarkedstyrelse. Google Scholar
  25. Maaß, J. & Schlöglmann, W. (1988). The mathematical world in the black box: Significance of the black box as a medium of mathematizing. Cybernetics and Systems: An International Journal, 19, 295–309. CrossRefGoogle Scholar
  26. Nissen, H. J. et al. (1991). Frühe schrift und techniken der wirtschaftsverwaltung im alten vorderen orient. Bad Salzdetfurth: Franzbecker. Google Scholar
  27. Pichot, A. (1995). Die geburt der wissenschaft. Darmstadt: Wissenschaftliche Buchgesellschaft. Google Scholar
  28. Schliemann, A. (1999). Everyday mathematics and adult mathematics education. In M. Groenestijn & D. Coben (Eds.), Mathematics as part of lifelong learning (pp. 20–31). London: Goldsmiths University of London. Google Scholar
  29. Schlöglmann, W. (1992). Mathematik als technologie. In W. Blumberger & D. Nemeth (Eds.), Der technologische Imperativ (pp. 189–198). München-Wien: Profil. Verlag. Google Scholar
  30. Schlöglmann, W. (1999). On the relationship between cognitive and affective component of learning mathematics. In M. Groenestijn & D. Coben (Eds.), Mathematics as part of lifelong learning (pp. 198–203). London: Goldsmiths University of London. Google Scholar
  31. Schlöglmann, W. (2002). Mathematics and society—must all people learn mathematics? In L. Ostergaard & T. Wedege (Eds.), Numeracy for empowerment and democracy? Proceedings of the 8th international conference of adults learning mathematics (ALM8) (pp. 139–144). Roskilde: Roskilde University Printing. Google Scholar
  32. Schlöglmann, W. (2003). Education in mathematics for adults today. In J. Evans, P. Healy, V. Seabright, & A. Tomlin (Eds.), Policies and practices for adult learning mathematics: opportunities and risks. Proceedings of the 9th international conference of adults learning mathematics (ALM 9)—A Research Forum (pp. 143–150). London: Kings College. Google Scholar
  33. Schlöglmann, W. (2006). Lifelong mathematics learning—a threat or an opportunity? Some remarks on affective conditions in mathematics courses. Adult Learning Mathematics—an International Journal, 2(1), 6–17. Google Scholar
  34. Schmandt-Besserat, D. (1977). An archaic recording system and the origin of writing. Syro-Mesopotamian Studies, 1, 31–70. Google Scholar
  35. Stroop, D. (1998). Alltagsverständnis von mathematik bei erwachsenen. Frankfurt: Peter Lang Verlag. Google Scholar
  36. Struik, D. J. (1967). Abriss der geschichte der mathematik. Berlin: VEB. CrossRefGoogle Scholar
  37. Van der Waerden, B. (1979). Die Pythagoreer. Zürich–München: Artemis. Google Scholar
  38. Wedege, T. (1998). Adults knowing and learning mathematics. In S. Tosse et al. (Eds.), Corporate and nonconform learning. Adult education research in Nordic countries (pp. 177–197). Tapir: Trondheim. Google Scholar
  39. Wedege, T. & Evans, J. (2006). Adults’ resistance to learning in school versus adults’ competencies in work: The case of mathematics. Adults Learning Mathematics—An International Journal, 1(2), 28–43. Google Scholar
  40. Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. New York: Cambridge University Press. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Universität LinzLinzAustria

Personalised recommendations