Scaling Solutions

  • Markus Q. Huber
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter a method to assess the possible existence and form of a scaling solution for a given theory is derived. The original goal of the underlying work was to investigate the IR behavior of Yang-Mills theory in the maximally Abelian gauge (MAG). However, it soon became clear that the system of interactions given by its Lagrangian requires a more refined treatment than provided by any previous work, the reason being the large number of terms in the DSEs. Subsequently a generic method was developed that can handle a large set of interactions. It allows to determine for an arbitrary system of interactions if a scaling solution is possible and what its qualitative features are. The main proof, albeit relying only on simple mathematics like combinatorics and inequalities, is rather technical. However, it provides a simple recipe for finding possible scaling solutions.

Keywords

External Momentum Gluon Propagator Landau Gauge Longitudinal Part Ghost Propagator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.S. Fischer, J.M. Pawlowski, Phys. Rev. D 75, 025012 (2007), arXiv:hep-th/0609009Google Scholar
  2. 2.
    C.S. Fischer, J.M. Pawlowski, Phys. Rev. D 80, 025023 (2009), arXiv:0903.2193 [hep-th]Google Scholar
  3. 3.
    M.Q. Huber, K. Schwenzer, R. Alkofer, Eur. Phys. J. C 68, 581–600 (2010), arXiv:0904.1873 [hep-th]Google Scholar
  4. 4.
    R. Alkofer, M.Q. Huber, K. Schwenzer, Phys. Rev. D 81, 105010 (2010), arXiv:0801.2762 [hep-th]Google Scholar
  5. 5.
    G.V. Dunne, I.G. Halliday, Nucl. Phys. B 308, 589 (1988)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    G.V. Dunne, I.G. Halliday, Phys. Lett. B 193, 247 (1987)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    I.G. Halliday, R.M. Ricotta, Phys. Lett. B 193, 241 (1987)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    R. Ricotta, in J.J. Giambiagi Festschrift, ed. by H. Falomir (World Scientific, Singapore, 1990), p. 350Google Scholar
  9. 9.
    C. Anastasiou, E.W.N. Glover, C. Oleari, Nucl. Phys. B 572, 307–360 (2000), hep-ph/9907494Google Scholar
  10. 10.
    A.T. Suzuki, E.S. Santos, A.G.M. Schmidt, J. Phys. A 36, 4465 (2003), hep-ph/0210148Google Scholar
  11. 11.
    A.T. Suzuki, E.S. Santos, A.G.M. Schmidt, Eur. Phys. J. C 26, 125–137 (2002), hep-th/0205158Google Scholar
  12. 12.
    A.T. Suzuki, A.G.M. Schmidt, J. Phys. A 33, 3713–3722 (2000), hep-th/0005082Google Scholar
  13. 13.
    A.T. Suzuki, A.G.M. Schmidt, Eur. Phys. J. C 10, 357–362 (1999), hep-th/9903076Google Scholar
  14. 14.
    A.T. Suzuki, A.G.M. Schmidt, Eur. Phys. J. C 5, 175–179 (1998), arXiv:hep-th/9709144Google Scholar
  15. 15.
    E.E. Boos, A.I. Davydychev, Moscow Univ. Phys. Bull. 42N3, 6–10 (1987)Google Scholar
  16. 16.
    K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159–204 (1981)CrossRefADSGoogle Scholar
  17. 17.
    F.V. Tkachov, Phys. Lett. B 100, 65–68 (1981)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    H. Exton, J. Phys. A 28, 631 (1994)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    R. Alkofer, M.Q. Huber, K. Schwenzer, Eur. Phys. J. C 62, 761–781 (2009), arXiv:0812.4045 [hep-ph]Google Scholar
  20. 20.
    M.Q. Huber, Diploma thesis, Karl-Franzens-University Graz, 2007, http://physik.uni-graz.at/mah/documents/Huber-IRBehaviorDDimensions.pdf
  21. 21.
    M.Q. Huber, R. Alkofer, K. Schwenzer, PoS Confinement8, 174 (2008), arXiv:0812.4451 [hep-ph]Google Scholar
  22. 22.
    C.S. Fischer, A. Maas, J.M. Pawlowski, Ann. Phys. 324, 2408–2437 (2009), arXiv:0810.1987 [hep-ph]Google Scholar
  23. 23.
    A. Cucchieri, A. Maas, T. Mendes, Phys. Rev. D 74, 014503 (2006), arXiv:hep-lat/0605011Google Scholar
  24. 24.
    E.M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, A. Schiller, I.L. Bogolubsky, Braz. J. Phys. 37, 193 (2007), arXiv:hep-lat/0609043Google Scholar
  25. 25.
    A. Maas, Phys. Rev. D 75, 116004 (2007), arXiv:0704.0722 [hep-lat]Google Scholar
  26. 26.
    A. Cucchieri, A. Maas, T. Mendes, Phys. Rev. D 77, 094510 (2008), arXiv:0803.1798 [hep-lat]Google Scholar
  27. 27.
    W. Schleifenbaum, A. Maas, J. Wambach, R. Alkofer, Phys. Rev. D 72, 014017 (2005), hep-ph/0411052Google Scholar
  28. 28.
    T. Mendes, A. Cucchieri, A. Mihara, AIP Conf. Proc. 892, 203–205 (2007), arXiv:hep-lat/0611002Google Scholar
  29. 29.
    M.A.L. Capri, A.J. Gomez, M.S. Guimaraes, V.E.R. Lemes, S.P. Sorella, arXiv:1002.1659 [hep-th]Google Scholar
  30. 30.
    M.A.L. Capri, V.E.R. Lemes, R.F. Sobreiro, S.P. Sorella, R. Thibes, Phys. Rev. D 77, 105023 (2008), arXiv:0801.0566 [hep-th]Google Scholar
  31. 31.
    J. Bjorken, S. Drell, Relativistische Quantenfeldtheorie (Bibliographisches Institut, Mannheim, 1967)MATHGoogle Scholar
  32. 32.
    R. Alkofer, C.S. Fischer, F.J. Llanes-Estrada, Phys. Lett. B 611, 279–288 (2005), arXiv:hep-th/0412330Google Scholar
  33. 33.
    M.Q. Huber, R. Alkofer, C.S. Fischer, K. Schwenzer, Phys. Lett. B 659, 434–440 (2008), arXiv:0705.3809 [hep-ph]Google Scholar
  34. 34.
    K. Schwenzer, arXiv:0811.3608 [hep-ph]Google Scholar
  35. 35.
    L. Fister, R. Alkofer, K. Schwenzer, Phys. Lett. B 688, 237–243 (2010), arXiv:1003.1668 [hep-th]Google Scholar
  36. 36.
    L. Fister, Diploma thesis, Karl-Franzens-University Graz, 2010, arXiv:1002.1649 [hep-th]Google Scholar
  37. 37.
    C. Lerche, L. von Smekal, Phys. Rev. D 65, 125006 (2002), arXiv:hep-ph/0202194Google Scholar
  38. 38.
    L. von Smekal, R. Alkofer, A. Hauck, Phys. Rev. Lett. 79, 3591–3594 (1997), arXiv:hep-ph/9705242Google Scholar
  39. 39.
    L. von Smekal, A. Hauck, R. Alkofer, Ann. Phys. 267, 1 (1998), arXiv:hep-ph/9707327Google Scholar
  40. 40.
    R. Alkofer, C.S. Fischer, M.Q. Huber, K. Schwenzer, PoS LAT2007, 329 (2007), arXiv:0710.1054 [hep-ph]Google Scholar
  41. 41.
    R. Alkofer, C.S. Fischer, H. Reinhardt, L. von Smekal, Phys. Rev. D 68, 045003 (2003), arXiv:hep-th/0304134Google Scholar
  42. 42.
    R. Alkofer, L. von Smekal, Phys. Rept. 353, 281 (2001), arXiv:hep-ph/0007355Google Scholar
  43. 43.
    P. Pascual, R. Tarrach, Lect. Notes Phys. 194, 1–277 (1984)CrossRefADSGoogle Scholar
  44. 44.
    A. Cucchieri, A. Maas, T. Mendes, Comput. Phys. Commun. 180, 215–225 (2009), arXiv:0806.3124 [hep-lat]Google Scholar
  45. 45.
    T. Kugo, I. Ojima, Prog. Theor. Phys. Suppl. 66, 1 (1979)MathSciNetCrossRefADSGoogle Scholar
  46. 46.
    L. Baulieu, J. Thierry-Mieg, Nucl. Phys. B 197, 477 (1982)CrossRefADSGoogle Scholar
  47. 47.
    J. Thierry-Mieg, Nucl. Phys. B 261, 55 (1985)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Markus Q. Huber
    • 1
  1. 1.University of GrazGrazAustria

Personalised recommendations