State Specific Preparation and Alignment of Gas-Phase Reagents

  • Bruce L. Yoder
Part of the Springer Theses book series (Springer Theses)


Quantum state-specific preparation and alignment of a molecular beam of methane are two central concepts in this thesis work. In this chapter, I explain the processes by which the molecules in the molecular beam are rovibrationally excited and aligned. Experimental evidence of the extent of state-specific preparation is shown.


Molecular Beam Frequency Sweep Rabi Frequency Excitation Field Pyroelectric Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Argos model 2400 Aculight CorporationGoogle Scholar
  2. 2.
    U. Hefter et al., Preparation and detection of alignment with high ||m|| selectivity by saturated laser optical pumping in molecular beams. J. Chem. Phys. 85(1), 286–302 (1986)CrossRefGoogle Scholar
  3. 3.
    B.W. Shore et al., Simple mechanical analogs of rapid adiabatic passage in atomic physics. Am. J. Phys. 77(12), 1183–1194 (2009)CrossRefGoogle Scholar
  4. 4.
    N.V. Vitanov et al., Laser-induced population transfer by adiabatic passage techniques. Annu. Rev. Phys. Chem. 52, 763–809 (2001)CrossRefGoogle Scholar
  5. 5.
    I.I. Rabi, N.F. Ramsey, J. Schwinger, Use of rotating coordinates in magnetic resonance problems. Rev. Mod. Phys. 26(2), 167–171 (1954)CrossRefGoogle Scholar
  6. 6.
    I.I. Rabi, Space quantization in a gyrating magnetic field. Phys. Rev. 51(8), 0652–0654 (1937)CrossRefGoogle Scholar
  7. 7.
    P.L. Knight, P.W. Milonni, The Rabi frequency in optical-spectra. Phys. Rep.-Rev. Sect. Phys. Lett. 66(2), 21–107 (1980)Google Scholar
  8. 8.
    S. Avrillier et al., Supersonic beam spectroscopy of low J-transitions of the nu-3 band of SF6 - Rabi oscillations and adiabatic passage with a CW laser. Opt. Commun. 39(5), 311–315 (1981)CrossRefGoogle Scholar
  9. 9.
    A.G. Adam et al., Rabi oscillations and rapid-passage effects in the molecular-beam CO2-laser stark spectroscopy of CH3F. Phys. Rev. A 32(3), 1451–1457 (1985)CrossRefGoogle Scholar
  10. 10.
    C.C. Tannoudji, Frontiers in Laser Spectroscopy (North-Holland, Amsterdam, 1977)Google Scholar
  11. 11.
    B.W. Shore, The Theory of Coherent Atomic Excitation, vol. 1 (Wiley-Interscience, New York, 1990)Google Scholar
  12. 12.
    M.M.T. Loy, Observation of population inversion by optical adiabatic passage. Phys. Rev. Lett. 32(15), 814–817 (1974)CrossRefGoogle Scholar
  13. 13.
    J.P.C. Kroon et al., Rabi oscillations in the optical-pumping of a metastable neon beam with a CW dye-laser. Phys. Rev. A 31(6), 3724–3732 (1985)CrossRefGoogle Scholar
  14. 14.
    C. Liedenbaum, S. Stolte, J. Reuss, Inversion produced and reversed by adiabatic passage. Phys. Report. 178(1), 1–24 (1989)CrossRefGoogle Scholar
  15. 15.
    V.S. Malinovsky, J.L. Krause, General theory of population transfer by adiabatic rapid passage with intense chirped laser pulses. Eur. Phys. J. D 14(2), 147–155 (2001)CrossRefGoogle Scholar
  16. 16.
    V.S. Malinovsky, J.L. Krause, Efficiency and robustness of coherent population transfer with intense, chirped laser pulses. Phys. Rev. A 63(4), 1 (2001)CrossRefGoogle Scholar
  17. 17.
    L. Allen, J.H. Eberly, Optical Resonance and Two Level Atoms (Wiley, New York, 1975)Google Scholar
  18. 18.
    M.D. Levenson, S.S. Kano, Introduction to Nonlinear Laser Spectroscopy. Quantum Electronics: Principles and Applications (Harcourt Brace Jovanovich, Boston, 1988)Google Scholar
  19. 19.
    C. Zener, Non-adiabatic crossing of energy levels. Proc. Royal Soc. London Ser. a-Contain. Pap. Math. Phys. Character 137(833), 696–702 (1932)CrossRefGoogle Scholar
  20. 20.
    K.A. Suominen, B.M. Garraway, Population transfer in a level-crossing model with 2 time scales. Phys. Rev. A 45(1), 374–386 (1992)CrossRefGoogle Scholar
  21. 21.
    L.S. Rothman et al., The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110(9–10), 533–572 (2009)CrossRefGoogle Scholar
  22. 22.
    W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, Berlin, 1998)Google Scholar
  23. 23.
    R.C. Hilborn, Einstein coefficients, cross-sections, F values, dipole-moments, and all that. Am. J. Phys. 50(11), 982–986 (1982)CrossRefGoogle Scholar
  24. 24.
    C. Liedenbaum, S. Stolte, J. Reuss, Multi-photon excitation of a beam of SF6 molecules pumped and probed by CW CO2 lasers. Chem. Phys. 122(3), 443–454 (1988)CrossRefGoogle Scholar
  25. 25.
    L.B.F. Juurlink et al., Eigenstate-resolved studies of gas-surface reactivity: CH4 (nu(3)) dissociation on Ni(100). Phys. Rev. Lett. 83(4), 868–871 (1999)CrossRefGoogle Scholar
  26. 26.
    R.N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, 1988)Google Scholar
  27. 27.
    U. Fano, J.H. Macek, Impact excitation and polarization of emitted light. Rev. Mod. Phys. 45(4), 553–573 (1973)CrossRefGoogle Scholar
  28. 28.
    C.H. Greene, R.N. Zare, Photonization-produced alignment of CD. Phys. Rev. A 25(4), 2031–2037 (1982)CrossRefGoogle Scholar
  29. 29.
    C.H. Greene, R.N. Zare, Photofragment alignment and orientation. Annu. Rev. Phys. Chem. 33, 119–150 (1982)CrossRefGoogle Scholar
  30. 30.
    A.J. Orr-Ewing, R.N. Zare, Orientation and Alignment of Reaction Products. Annu. Rev. Phys. Chem. 45(1), 315–366 (1994)CrossRefGoogle Scholar
  31. 31.
    D. Dill, Angular- distributions of photoelectrons from H2-effects of rotational autoionization. Phys. Rev. A 6(1), 160 (1972)CrossRefGoogle Scholar
  32. 32.
    D. Dill, U. Fano, Parity unfavoredness and distribution of photofragments. Phys. Rev. Lett. 29(18), 1203 (1972)CrossRefGoogle Scholar
  33. 33.
    U. Fano, D. Dill, Angular-momentum transfer in theory angular-distributions. Phys. Rev. A 6(1), 185–192 (1972)CrossRefGoogle Scholar
  34. 34.
    E.D. Poliakoff et al., Polarization of fluorescence following molecular photo-ionization. Phys. Rev. Lett. 46(14), 907–910 (1981)CrossRefGoogle Scholar
  35. 35.
    W.R. Simpson, A.J. Orrewing, R.N. Zare, State-to-state differential cross-sections for the reaction Cl((2)P(3/2)) + CH4(nu − 3 = 1, J = 1)–]HCL(nu’ = 1, J’) + CH3. Chem. Phys. Lett. 212(1–2), 163–171 (1993)CrossRefGoogle Scholar
  36. 36.
    W.R. Simpson et al., Reaction of Cl with vibrationally excited CH4 and CHD3 - state-to-state differential cross-sections and steric effects for the HCl product. J. Chem. Phys. 103(17), 7313–7335 (1995)CrossRefGoogle Scholar
  37. 37.
    W.R. Simpson et al., Picturing the transition-state region and understanding vibrational enhancement for the Cl + CH4 - > HCl + CH3 reaction. J. Phys. Chem. 100(19), 7938–7947 (1996)CrossRefGoogle Scholar
  38. 38.
    J.P. Camden et al., Comparing reactions of H and Cl with C-H stretch-excited CHD3. J. Chem. Phys. 124(3),   (2006)CrossRefGoogle Scholar
  39. 39.
    E.H. Van Kleef, I. Powis, Anisotropy in the preparation of symmetric top excited states I. One-photon electric dipole excitation. Mol. Phys. 96(5), 757–774 (1999)CrossRefGoogle Scholar
  40. 40.
    S.E. Choi, R.B. Bernstein, Theory of oriented symmetrical-top molecule beams – precession degree of orientation, and photofragmentation of rotationally state-selected molecules. J. Chem. Phys. 85(1), 150–161 (1986)CrossRefGoogle Scholar
  41. 41.
    S. Stolte et al., Analysis of the steric dependence of the CH3I + Rb reaction using a Legendre expansion technique. Chem. Phys. 71(3), 353–361 (1982)CrossRefGoogle Scholar
  42. 42.
    R.N. Zare, Optical preparation of aligned reagents. Berichte Der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys. 86(5), 422–425 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations