• Wolfram Schmidt
  • Peter Lanzer


Selection of the optimum instrumentation in individual cases represents an important part of interventional decision making. To date, the majority of these decisions are based on personal experience, evidence-based clinical data, availability, and costs. Decisions based on objective performance criteria are relatively rare due to the lack of a more detailed technical documentation of individual products. Although it is true that even the best technical description of a specific product may not fully capture the behavior of the product in clinical settings, the availability of technical data has a direct impact on the ability of the operators to weight advantages and drawbacks of interventional instrumentation and make informed and better choices between similar and dissimilar products. Given the wealth of products reaching the growing markets, such ability shall likely become even more important in the future. To realize better choices for instrumentation, four basic steps should be considered. First, standard methodology of measurements of biomechanical properties of stents and SDS must be improved; examples and some proposals have been provided in this paper. Second, industry needs to adopt these methods and market their stent products along with the disclosure of the relevant nonproprietary biomechanical data. Third, biomechanical interactions between stents and lesions need to be better studied and understood. Fourth, the results of steps 1–3 need to be clinically applied. Further advancements of the state of the practice and art of intracoronary stenting are an important future goal of the interventional community. This goal will require an ongoing strong interdisciplinary cooperation of physicians, medical engineers, and natural scientists.


Balloon Catheter Stent Design Stent Diameter Nitinol Stents Strut Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dotter CT, Judkins MP (1964) Transluminal treatment of arteriosclerotic obstruction. Description of a new technic and a preliminary report of its application. Circulation 30:654–670PubMedCrossRefGoogle Scholar
  2. 2.
    Gruntzig A (1978) Transluminal dilatation of coronary-artery stenosis. Lancet 1:263PubMedCrossRefGoogle Scholar
  3. 3.
    Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L (1987) Intravascular stent to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 316:701–706PubMedCrossRefGoogle Scholar
  4. 4.
    Wessely R (2010) New drug-eluting stent concepts. Nat Rev Cardiol 7:194–203PubMedCrossRefGoogle Scholar
  5. 5.
    Garg S, Serruys PW (2010) Coronary stents – current status. J Am Coll Cardiol 56:S1–S42PubMedCrossRefGoogle Scholar
  6. 6.
    Garg S, Serruys PW (2010) Coronary stents – looking forward. J Am Coll Cardiol 56:S43–S78PubMedCrossRefGoogle Scholar
  7. 7.
    Lanzer P, Gijsen FJH, Topoleski LDT, Holzapfel GA (2010) Call for standards in technical documentation of intracoronary stents. Herz 35:27–33PubMedCrossRefGoogle Scholar
  8. 8.
    ISO 25539-2: 2009-08 (2009) Cardiovascular implants – endovascular devices – part 2: vascular stents. Accessed 30 May 2010
  9. 9.
    ISO 10555-1: Sterile, single-use intravascular catheters – part 1: general requirements (ISO 10555-1:1995, including Amd 1:1999 and Amd 2:2004)Google Scholar
  10. 10.
    ISO 10555-4: Sterile, single-use intravascular catheters – part 4: ballon dilatation catheters (ISO 10555-4:1996)Google Scholar
  11. 11.
    ASTM 2081-06 (2006) Standard guide for characterization and presentation of the dimensional attributes of vascular stents. Accessed 30 May 2010
  12. 12.
    Guidance for industry and FDA staff: non-clinical engineering tests and recommended labelling for intra­vascular stents and associated delivery systems.­tionandGuidance/GuidanceDocuments/ucm071863.htm. Accessed 30 May 2010
  13. 13.
    Wakesman R, Pakala R (2009) Drug-eluting balloon: the come-back kid? Circ Cardiovasc Interv 2:352–358CrossRefGoogle Scholar
  14. 14.
    Verheye S, Grube E, Ramcharitar S, Schofer JJ, Witzenbichler B, Kovac J, Hauptamm KE, Pierfrancesco A, Wiemer M, Lefevre T, Serruys PW, van Geuns RJ (2009) First in man (FIM) study of the Stentys TM bifurcation stent-30 days results. EuroIntervention 4:566–571PubMedCrossRefGoogle Scholar
  15. 15.
    Schmidt W, Lanzer P, Behrens P, Topoleski LDT, Schmitz K-P (2009) A comparison of the mechanical performance of seven drug-eluting stent systems. Catheter Cardiovasc Interv 73:350–360PubMedCrossRefGoogle Scholar
  16. 16.
    Schmidt W, Schmitz K-P (2006) Devices. In: Lanzer P (ed) Mastering of endovascular techniques – a guide to excellence. Lippincott William & Wilkins, Philadelphia, pp 114–135Google Scholar
  17. 17.
    Schmidt W, P Behrens, N Grabow, K Sternberg, K-P Schmitz Untersuchung mechanischer Eigenschaften von polymerbeschichteten Drug-Eluting-Stents. In: Proceedings der Gemeinsamen Jahrestagung der Deutschen, Österreichischen und Schweizerischen Gesellschaften für Biomedizinische Technik, 6.-9.9.2006, ETH Zürich, Schweiz, ISSN 0939–4990Google Scholar
  18. 18.
    Brown DA, Lee EW, Loh CT, Kee ST (2009) A new wave in treatment of vascular occlusive disease: biodegradable stents – clinical experience and scientific principles. J Vasc Interv Radiol 20:315–325PubMedCrossRefGoogle Scholar
  19. 19.
    ISO 10993-15:2000 Biological evaluation of medical devices Part 15: Identification and quantification of degradation products from metals and alloysGoogle Scholar
  20. 20.
    Alfonso F, Macaya C, Goicolea J, Hernandez R, Segovia J, Zamorano J, Bañuelos C, Zarco P (1994) Determinants of coronary compliance in patients with coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol 4:879–884CrossRefGoogle Scholar
  21. 21.
    Nakatani S, Yamagishi M, Tamai J, Goto Y, Umeno T, Kawaguchi A, Yutani C, Miyatake K (1995) Assessment of coronary artery distensibility by intravascular ultrasound. Circulation 91:2904–2910PubMedCrossRefGoogle Scholar
  22. 22.
    Lanzer P, Prechelt L (2008) Spelling out risk reduction strategies for intracoronary stenting. EuroIntervention 3:622–626PubMedCrossRefGoogle Scholar
  23. 23.
    Schmidt W, Behrens P, Schmitz K-P (2009) Biomechanical aspects of potential stent malapposition at coronary stent implantation. In: Dössel O, Schlegel WC (eds) WC2009, IFMBE proceedings 25/XI. Springer, Berlin, pp 136–139Google Scholar
  24. 24.
    Lozano I, Lopez-Palop R, Pinar E, Perez-Lorente F, Pico F, Valdes M (2006) Comparison between theoretical and actual intracoronary stent dimensions in non-complex lesions. Rev Esp Cardiol 59(6):624–627PubMedCrossRefGoogle Scholar
  25. 25.
    Wiemer M, Butz T, Schmidt W, Schmitz KP, Horstkotte D, Langer C (2010) Scanning electron microscopic analysis of different drug eluting stents after failed implantation: from nearly undamaged to major damaged polymers. Catheter Cardiovasc Interv 75:905–911PubMedGoogle Scholar
  26. 26.
    Basalus MWZ, Ankone MJK, van Howelingen KG, de Man FHAF, von Birgelen C (2009) Coating irregularities of durable polymer based drug-eluting stents as assessed by scanning electron microscopy. EuroIntervention 5:157–165PubMedCrossRefGoogle Scholar
  27. 27.
    Meier B The guiding catheter: the most underrated asset to coronary angioplasty. J Invasive Cardiol. By hmpjournals, Created 1 Aug 2008 – 12:12 Dec 2005, Accessed 13 July 2011
  28. 28.
    Grossman PM, Gurm HS, McNamara R, LaLonde T, Changezi H, Share D, Smith DE, Chetcuti SJ, Moscucci M, Blue Cross Blue Shield of Michigan Cardiovascular Consortium (2009) Percutaneous coronary intervention complications and guide catheter size: bigger is not better. J Am Coll Cardiol Interv 2:636–644. doi: 10.1016/j.jcin.2009.05.012 Google Scholar
  29. 29.
    Seldinger SI (1953) Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta radiologica 39(5): 368–76. doi: 10.3109/00016925309136722
  30. 30.
    Kim HY (2010) Percutaneous recanalization of coronary chronic total occlusions: current devices and specialized wire crossing techniques. Korean Circ J 40:209–215. doi: 10.4070/kcj.2010.40.5.209 PubMedCrossRefGoogle Scholar
  31. 31.
    Saito S, Tanaka S, Hiroe Y, Miyashita Y, Takahashi S, Satake S, Tanaka K (2003) Angioplasty for chronic total occlusion by using tapered tip guidewires. Catheter Cardiovasc Interv 59:305–311PubMedCrossRefGoogle Scholar
  32. 32.
    Kaplan S, Kaplan ST, Kutlu M (2010) An unusual case of guide wire fractured during primary percutaneous coronary intervention, and two year follow-up. Kardiol Pol 68(11):1291–1293PubMedGoogle Scholar
  33. 33.
    Hong YM, Lee SR (2010) A case of guide wire fracture with remnant filaments in the left anterior descending coronary artery and aorta. Korean Circ J 40:475–477. doi: 10.4070/kcj.2010.40.9.475 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Biomedical EngineeringUniversity of RostockRostock-WarnemündeGermany
  2. 2.Institute for ImplantTechnology and Biomaterials - IIB e.V.Rostock-WarnemündeGermany
  3. 3.Department of Internal Medicine, Division of Cardiovascular DiseaseGesundheitszentrum Bitterfeld/Wolfen gGmbHBitterfeld-WolfenGermany

Personalised recommendations