Transradial Access for Percutaneous Coronary Interventions

  • Martial Hamon


Radial artery has become an important access site to perform catheter-based coronary interventions. The setting up of a transradial programme can be a daunting task and at times may be associated with endless obstacles that need to be overcome. With appropriate planning, involvement, training and support of the multi-disciplinary catheter laboratory team members, good patient selection and preparation and meticulous attention to the technical aspects and potential pitfalls of a transradial procedure, as well as perseverance, these obstacles can be overcome. The hard work associated with the setting up of the programme will bear fruit in potential cost saving for the hospital, reduced work load for the nursing staff and most important of all, better patient comfort and safer patient care.


Percutaneous Coronary Intervention Radial Artery Percutaneous Coronary Intervention Procedure Vascular Closure Device Access Site Complication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kinnaird TD, Stabile E, Mintz GS, Lee CW, Canos DA, Gevorkian N et al (2003) Incidence, predictors, and prognostic implications of bleeding and blood transfusion following percutaneous coronary interventions. Am J Cardiol 92(8):930–935PubMedCrossRefGoogle Scholar
  2. 2.
    Yang X, Alexander KP, Chen AY, Roe MT, Brindis RG, Rao SV et al (2005) The implications of blood transfusions for patients with non-ST-segment elevation acute coronary syndromes: results from the CRUSADE National Quality Improvement Initiative. J Am Coll Cardiol 46(8):1490–1495PubMedCrossRefGoogle Scholar
  3. 3.
    Hamon M, Filippi-Codaccioni E, Riddell JW, Lepage O (2007) Prognostic impact of major bleeding in patients with acute coronary syndromes. A systematic review and meta-analysis. EuroIntervention 3:400–408PubMedCrossRefGoogle Scholar
  4. 4.
    Koreny M, Riedmuller E, Nikfardjam M, Siostrzonek P, Mullner M (2004) Arterial puncture closing devices compared with standard manual compression after cardiac catheterization: systematic review and meta-analysis. JAMA 29:350–357CrossRefGoogle Scholar
  5. 5.
    Agostoni P, Biondi-Zoccai GG, de Benedictis ML, Rigattieri S, Turri M, Anselmi M et al (2004) Radial versus femoral approach for percutaneous coronary diagnostic and interventional procedures; systematic overview and meta-analysis of randomized trials. J Am Coll Cardiol 44:349–356PubMedCrossRefGoogle Scholar
  6. 6.
    Cooper CJ, El-Shiekh RA, Cohen DJ, Blaesing L, Burket MW, Basu A et al (1999) Effect of transradial access on quality of life and cost of cardiac catheterization: a randomized comparison. Am Heart J 138:430–436PubMedCrossRefGoogle Scholar
  7. 7.
    Mann T, Cowper PA, Peterson ED, Cubeddu G, Bowen J, Giron L et al (2000) Transradial coronary stenting: comparison with femoral access closed with an arterial suture device. Catheter Cardiovasc Interv 49:150–156PubMedCrossRefGoogle Scholar
  8. 8.
    Roussanov O, Wilson SJ, Henley K, Estacio G, Hill J, Dogan B et al (2007) Cost-effectiveness of the radial versus femoral artery approach to diagnostic cardiac catheterization. J Invasive Cardiol 19:349–353PubMedGoogle Scholar
  9. 9.
    Kumar S, Anantharaman R, Das P, Hobbs J, Densem C, Ansell J et al (2004) Radial approach to day case intervention in coronary artery lesions (RADICAL): a single centre safety and feasibility study. Heart 90:1340–1341PubMedCrossRefGoogle Scholar
  10. 10.
    Slagboom T, Kiemeneij F, Laarman GJ, van der Wieken R (2005) Outpatient coronary angioplasty: feasible and safe. Catheter Cardiovasc Interv 64:421–427PubMedCrossRefGoogle Scholar
  11. 11.
    Wiper A, Kumar S, MacDonald J, Roberts DH (2006) Day case transradial coronary angioplasty: a four-year single-center experience. Catheter Cardiovasc Interv 68:549–553PubMedCrossRefGoogle Scholar
  12. 12.
    Barbeau GR, Arsenault F, Dugas L, Simard S, Larivière MM (2004) Evaluation of the ulnopalmar arterial arches with pulse oximetry and plethysmography: comparison with the Allen’s test in 1010 patients. Am Heart J 147:489–493PubMedCrossRefGoogle Scholar
  13. 13.
    Kiemeneij F, Vajifdar BU, Eccleshall SC, Laarman G, Slagboom T, van der Wieken R (2003) Evaluation of a spasmolytic cocktail to prevent radial artery spasm during coronary procedures. Catheter Cardiovasc Interv 58:281–284PubMedCrossRefGoogle Scholar
  14. 14.
    Varenne O, Jegou A, Cohen R, Empana JP, Salengro E, Ohanessian A et al (2006) Prevention of arterial spasm during percutaneous coronary interventions through radial artery: the SPASM study. Catheter Cardiovasc Interv 68:231–235PubMedCrossRefGoogle Scholar
  15. 15.
    Spaulding C, Lefevre T, Funck F, Thebault B, Chauveau M, Ben Hamda K et al (1996) Left radial approach for coronary angiography: results of a prospective study. Cathet Cardiovasc Diagn 39:365–370PubMedCrossRefGoogle Scholar
  16. 16.
    Burzotta F, Trani C, Hamon M, Amoroso G, Kiemeineij F (2008) Transradial approach for coronary angiography and interventions in patients with coronary bypass grafts. Catheter Cardiovasc Interv 72:263–272PubMedCrossRefGoogle Scholar
  17. 17.
    Lo TS, Nolan J (2007) Radial artery diameter, its response to sublingual GTN and implication for transradial cardiac actheterisation. Heart 93(supp1):A93Google Scholar
  18. 18.
    Lo TS, Fountzopoulos E, Butler R, Hetherington SL, Zaman A, Perera D et al (2007) Incidence of radial artery anatomical variation in patients undergoing transradial coronary angiography and intervention: influence on procedural outcome. Heart 93(supp1):A27Google Scholar
  19. 19.
    Valsecchi O, Vassileva A, Musumeci G, Rossini R, Tespili M, Guagliumi G et al (2006) Failure of transradial approach during coronary interventions: anatomic considerations. Catheter Cardiovasc Interv 67:870–878PubMedCrossRefGoogle Scholar
  20. 20.
    Segal AZ, Abernethy WB, Palacios IF, BeLue R, Rordorf G (2001) Stroke as a complication of cardiac catheterization: risk factors and clinical features. Neurology 56:975–977PubMedCrossRefGoogle Scholar
  21. 21.
    Wong SC, Minutello R, Hong MK (2005) Neurological complications following percutaneous coronary interventions (a report from the 2000–2001 New York State Angioplasty Registry). Am J Cardiol 96:1248–1250PubMedCrossRefGoogle Scholar
  22. 22.
    Busing KA, Schulte-Sasse C, Fluchter S, Suselbeck T, Haase KK, Neff W et al (2005) Cerebral infarction: incidence and risk factors after diagnostic and interventional cardiac catheterization – prospective evaluation at diffusion-weighted MR imaging. Radiology 235(1):177–183PubMedCrossRefGoogle Scholar
  23. 23.
    Lund C, Nes RB, Ugelstad TP, Due-Tonnessen P, Andersen R, Hol PK et al (2005) Cerebral emboli during left heart catheterization may cause acute brain injury. Eur Heart J 26:1269–1275PubMedCrossRefGoogle Scholar
  24. 24.
    Omran H, Schmidt H, Hackenbroch M, Illien S, Bernhardt P, von der Recke G et al (2003) Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: a prospective, randomised study. Lancet 36:1241–1246CrossRefGoogle Scholar
  25. 25.
    Hamon M, Gomes S, Oppenheim C, Morello R, Sabatier R, Lognone T et al (2006) Cerebral microembolism during cardiac catheterization and risk of acute brain injury: a prospective diffusion-weighted magnetic resonance imaging study. Stroke 37:2035–2038PubMedCrossRefGoogle Scholar
  26. 26.
    Hamon M, Gomes S, Clergeau M-R, Fradin S, Morello R, Hamon M (2007) Risk of acute brain injury related to cerebral microembolism during cardiac catheterization performed by right upper limb arterial access. Stroke 38:2176–2179PubMedCrossRefGoogle Scholar
  27. 27.
    Hamon M, Burzotta F, Oppenheim C, Morello R, Viader F, Hamon M (2007) Silent cerebral infarct after cardiac catheterization as detected by diffusion weighted magnetic resonnance imaging: a randomized comparison of radial and femoral arterial approaches. Trials 8:15PubMedCrossRefGoogle Scholar
  28. 28.
    Lange HW, von Boetticher H (2006) Randomized comparison of operator radiation exposure during coronary angiography and intervention by radial or femoral approach. Catheter Cardiovasc Interv 67:12–16PubMedCrossRefGoogle Scholar
  29. 29.
    Lo TS, Fountzopoulos E, Freestone B, Gunning M, Nolan J (2007) Radiation exposure and procedural duration; practical implications for transradial operators. Heart 93(supp1):A89Google Scholar
  30. 30.
    Brasselet C, Blanpain T, Tassan-Mangina S, Deschildre A, Duval S, Vitry F, Gaillot-Petit N, Clément JP, Metz D (2008) Comparison of operator radiation exposure with optimized radiation protection devices during coronary angiograms and ad hoc percutaneous coronary interventions by radial and femoral routes. Eur Heart J 29:63–70PubMedCrossRefGoogle Scholar
  31. 31.
    Hamon M, Sourgounis A (2008) Radiation exposure and vascular access site. Eur Heart J 29:954PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of CardiologyUniversity Hospital of CaenCaen, NormandyFrance

Personalised recommendations