Temporal Instabilities in Corrosion Processes

  • Marek Orlik
Part of the Monographs in Electrochemistry book series (MOEC)


In this chapter, temporal dynamic instabilities in the electrode processes associated with anodic electrodissolution of metals and semiconductors are described. Oscillations in these processes are generally associated with the periodic buildup and destruction of the passive layer on the electrode surface. Following concise characteristics of the passive/active transitions, including general and pitting corrosion, several experimental systems and their theoretical models are described. Experimental characteristics of the Fe/H2SO4 system include its dynamic analogies with the neural excitation and conduction. The evolution of theoretical models of the instabilities in the Fe/H2SO4 system is shown. Furthermore, the instabilities in electrodissolution of copper in various media, of nickel in sulfuric acid (the latter system being a typical HN-NDR oscillator), of cobalt and of vanadium in various media are described. In brief, analogous phenomena for the electrodissolution of silver, gold, aluminum, as well as for lead, zinc, tin, titanium, bismuth, cadmium, niobium, and tungsten in various media are characterized. The possible application of anodic dissolution in the micromachining process is indicated. In the last section, the oscillatory electrodissolution of cadmium-based and silicon semiconductors is outlined, as the introduction to spatial and spatiotemporal self-organization in these processes, described in Chap. 4 of volume II. It is concluded that for satisfactory description of temporary instabilities in the anodic dissolution of both metals and semiconductors it is necessary to invoke the spatial inhomogeneity of the oxidized surfaces, as described in Chaps. 2–4 of volume II.


Hopf Bifurcation Electrode Potential Passive Layer Tool Electrode Negative Differential Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fechner GT (1828) Zur Elektrochemie. 1. Ueber Umkehrungen der Polarität in der einfachen Kette. Schweiger’s J (Journal für Chemie und Physik) 53:129–151Google Scholar
  2. 2.
    Wojtowicz J (1973) Oscillatory behavior in electrochemical systems. In: Bockris JO’M, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 8. Plenum, New York, pp 47–120Google Scholar
  3. 3.
    Hudson JL, Bassett MR (1991) Oscillatory electrodissolution of metals. In: Luss D, Amundson NR (eds) Reviews in chemical engineering. Freund, LondonGoogle Scholar
  4. 4.
    Hudson JL, Tsotsis TT (1994) Electrochemical reaction dynamics: a review. Chem Eng Sci 49:1493–1572CrossRefGoogle Scholar
  5. 5.
    Landolt D (2007) Corrosion and surface chemistry of metals. EPFL, Taylor and Francis, Boca Raton, FLGoogle Scholar
  6. 6.
    Brett CMA, Brett AMO (1993) Electrochemistry. Principles, methods and applications. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Russell PP, Newman J (1983) Experimental determination of the passive-active transition for iron in 1 M sulfuric acid. J Electrochem Soc 130:547–553CrossRefGoogle Scholar
  8. 8.
    Epelboin I, Gabrielli C, Keddam M, Takenouti H (1975) A model of the anodic behaviour of iron in sulphuric acid medium. Electrochim Acta 20:913–916CrossRefGoogle Scholar
  9. 9.
    Pigeau A, Kirkpatrick HB (1969) Corrosion 25:209CrossRefGoogle Scholar
  10. 10.
    Hudson JL, Tabora J, Krischer K, Kevrekidis IG (1993) Spatiotemporal period doubling during the electrodissolution of iron. Phys Lett A 179:335–363CrossRefGoogle Scholar
  11. 11.
    Russell P, Newman J (1987) Anodic dissolution of iron in acidic sulfate electrolytes. II. Mathematical model of current oscillations observed under potentiostatic conditions. J Electrochem Soc 134:1051–1059CrossRefGoogle Scholar
  12. 12.
    Keddam M (2002) In: Marcus P (ed) Corrosion mechanisms in theory and practice. Dekker, New York, p 97CrossRefGoogle Scholar
  13. 13.
    Deslouis C, Tribollet B (1990) Flow modulation technique and EHD impedance: a tool for electrode processes and hydrodynamic studies. Electrochim Acta 35:1637–1648CrossRefGoogle Scholar
  14. 14.
    Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, New JerseyCrossRefGoogle Scholar
  15. 15.
    Datta M, Romankiw LT (1989) Application of chemical and electrochemical micromachining in the electronics industry. J Electrochem Soc 136:285C–292CCrossRefGoogle Scholar
  16. 16.
    Kiss L (1988) Kinetics of electrochemical metal dissolution. Akadémiái Kiadó, BudapestGoogle Scholar
  17. 17.
    Bonhoeffer KF, Rennenberg W (1941) Activity waves on passive iron wires. Z physik Chem 118:389CrossRefGoogle Scholar
  18. 18.
    Kortüm G (1966) Lehrbuch der Elektrochemie, 4th edn. Verlag Chemie, WeinheimGoogle Scholar
  19. 19.
    Franck UF, Meunier L (1953) Gekoppelte periodische Elektrodenvorgänge. Z Naturforsch 8b: 396–406Google Scholar
  20. 20.
    Bartlett JH (1945) Transient anode phenomena. Trans Electrochem Soc 87:521–545CrossRefGoogle Scholar
  21. 21.
    Diem C, Hudson JL (1987) Chaos during the electrodissolution of iron. AIChE J 33:218–224CrossRefGoogle Scholar
  22. 22.
    Wang Y, Hudson JL (1991) Effect of electrode surface area on chaotic attractor dimensions. AIChE J 37:1833–1843CrossRefGoogle Scholar
  23. 23.
    Sazou D, Pagitsas M (2006) On the onset of current oscillations at the limiting current region emerged during iron electrodissolution in sulfuric acid solution. Electrochim Acta 51:6281–6296CrossRefGoogle Scholar
  24. 24.
    Koper MTM (1996) Oscillations and complex dynamical bifurcations in electrochemical systems. In: Prigogine I, Rice SA (eds) Adv Chem Phys XCII. Wiley, New York, pp 161–298CrossRefGoogle Scholar
  25. 25.
    Sazou D, Pagitsas M, Georgolios C (1992) The influence of chloride ions on the dynamic characteristics observed at the transition between corrosion and passivation states of an iron electrode in sulphuric acid solutions. Electrochim Acta 37:2067–2076CrossRefGoogle Scholar
  26. 26.
    Izhikevich EM (2007) Dynamical systems in neuroscience. The geometry of excitability and bursting. MIT, CambridgeGoogle Scholar
  27. 27.
    Rinzel J (1987) In: Teramoto E, Yamaguti M (eds) Mathematical topics in population biology, morphogenesis and neurosciences, Springer, Berlin, 1987, pp 267–281Google Scholar
  28. 28.
    Izhikevich EM (2000) Neural excitability, spiking, and bursting. Int J Bifurc Chaos 10:1171–1266CrossRefGoogle Scholar
  29. 29.
    Kiss IZ, Lv Q, Organ L, Hudson JL (2006) Electrochemical bursting oscillations on a high-dimensional slow subsystem. Phys Chem Chem Phys 8:2707–2715CrossRefGoogle Scholar
  30. 30.
    Karantonis A, Koutsaftis D, Bredaki M, Koulombi N (2008) Reception and detection of chemical signaling by electrochemical oscillators. Chem Phys Lett 460:182–186CrossRefGoogle Scholar
  31. 31.
    Franck UF (1989) Periodische Strukturen und Vorgänge in gleichgewichtsfernen physikalisch-chemischen Systemen. Nova acta Leopoldina NF 60:109–131Google Scholar
  32. 32.
    Pagitsas M, Diamantopoulou A, Sazou D (2001) Distinction between general and pitting corrosion based on the nonlinear dynamical response of passive iron surfaces perturbed chemically by halides. Electrochem Commun 3:330–335CrossRefGoogle Scholar
  33. 33.
    Pagitsas M, Diamantopoulou A, Sazou D (2003) A point defect model for the general and pitting corrosion of iron|oxide|electrolyte interface deduced from current oscillations. Chaos Soliton Fract 17:263–275CrossRefGoogle Scholar
  34. 34.
    Sazou D, Pagitsas M (2003) Non-linear dynamics of the passivity breakdown of iron in acidic solutions. Chaos Soliton Fract 17:505–522CrossRefGoogle Scholar
  35. 35.
    Pagitsas M, Pavlidou PS, Sazou D (2007) Chlorates induced pitting corrosion of iron in sulfuric acid solutions: an analysis based on current oscillations and a point defect model. Chem Phys Lett 434:63–67CrossRefGoogle Scholar
  36. 36.
    Pagitsas M, Pavlidou M, Sazou D (2008) Localized passivity breakdown of iron in chlorate- and perchlorate-containing sulphuric acid solutions: a study based on current oscillations and a point defect model. Electrochim Acta 53:4784–4795CrossRefGoogle Scholar
  37. 37.
    Lou W, Ogura K (1995) Current oscillations observed on a stainless steel electrode in sulfuric acid solutions with and without chromic acid. Electrochim Acta 40:667–672CrossRefGoogle Scholar
  38. 38.
    Franck UF, FitzHugh R (1961) Periodische Elektrodenprozesse und ihre Beschreibung durch ein mathematisches Modell. Z Elektrochem 65:156–168Google Scholar
  39. 39.
    Wang Y, Hudson JL, Jaeger NI (1990) On the Franck-FitzHugh model of the dynamics of iron electrodissolution in sulfuric acid. J Electrochem Soc 137:485–488CrossRefGoogle Scholar
  40. 40.
    Griffin GL (1984) A simple phase transition model for metal passivation kinetics. J Electrochem Soc 131:18–21CrossRefGoogle Scholar
  41. 41.
    Talbot JB, Oriani RA (1985) Steady state multiplicity and oscillations in passive film formation. Electrochim Acta 1985:1277–1284CrossRefGoogle Scholar
  42. 42.
    Talbot JB, Oriani RA, DiCarlo M (1985) Application of linear stability and bifurcation analysis to passivation models. J Electrochem Soc 132:1545–1551CrossRefGoogle Scholar
  43. 43.
    Kado T, Kunitomi N (1991) A model for the current oscillations of iron in sulfuric acid. J Electrochem Soc 138:3312–3321CrossRefGoogle Scholar
  44. 44.
    Degn H (1968) Theory of electrochemical oscillations. Trans Faraday Soc 545:1348–1358CrossRefGoogle Scholar
  45. 45.
    Koper MTM, Sluyters JH (1993) A mathematical model for current oscillations at the active-passive transition in metal electrodissolution. J Electroanal Chem 347:31–48CrossRefGoogle Scholar
  46. 46.
    Nechiporuk VV, Petrenko OE (1998) Effect of migration nonequilibrium on bifurcation diagrams (electrochemical dissolution of metals). Russ J Electrochem 34:1158–1161Google Scholar
  47. 47.
    Kawczyński AL, Przasnyski M, Baranowski B (1984) Chaotic and periodic current oscillations at constant voltage conditions in the system Cu(s)|CuSO4 + H2SO4(aq)|Cu(s). J Electroanal Chem 179:285–288CrossRefGoogle Scholar
  48. 48.
    Kawczyński AL, Raczyński W, Baranowski B (1988) Analysis of chaotic oscillations in a simple electreochemical system. Z phys Chem Leipzig 269:596–602Google Scholar
  49. 49.
    Inzelt G (1993) Oscillations of the EQCM frequency response in the course of open-circuit copper dissolution in aqueous solutions of H2SO4 and CuSO4. J Electroanal Chem 348:465–471CrossRefGoogle Scholar
  50. 50.
    Hedges ES (1926) Periodic phenomena at anodes of copper and silver. J Chem Soc: 1533–1546Google Scholar
  51. 51.
    Hedges ES (1929) An enquiry into the cause of periodic phenomena in electrolysis. J Chem Soc: 1028–1038Google Scholar
  52. 52.
    Bonhoeffer KF, Gerischer H (1948) Periodic chemical reactions. V. Anodic behavior of copper in hydrochloric acid. Z Elektrochem 52:149–160Google Scholar
  53. 53.
    Cooper RS, Bartlett JH (1958) Convection and film instability copper anodes in hydrochloric acid. J Electrochem Soc 105:109–116CrossRefGoogle Scholar
  54. 54.
    Cooper JF, Muller RH, Tobias CW (1980) Periodic phenomena during anodic dissolution of copper at high current densities. J Electrochem Soc 127:1734–1744CrossRefGoogle Scholar
  55. 55.
    Lee HP, Nobe K, Pearlstein AJ (1985) Film formation and current oscillations in the electrodissolution of Cu in acidic media. I. Experimental studies. J Electrochem Soc 132:1031–1037CrossRefGoogle Scholar
  56. 56.
    Pearlstein AJ, Lee HP, Nobe K (1985) Film formation and current oscillations in the electrodissolution of Cu in acidic media. II. Mathematical model. J Electrochem Soc 132:2159–2165CrossRefGoogle Scholar
  57. 57.
    Bassett MR, Hudson JL (1987) The dynamics of the electrodissolution of copper. Chem Eng Commun 60:145–159CrossRefGoogle Scholar
  58. 58.
    Bassett MR, Hudson JL (1988) Shil’nikov chaos during copper electrodissolution. J Phys Chem 92:6963–6966CrossRefGoogle Scholar
  59. 59.
    Bassett MR, Hudson JL (1989) Quasi-periodicity and chaos during an electrochemical reaction. J Phys Chem 93:2731–2737CrossRefGoogle Scholar
  60. 60.
    Gu ZH, Chen J, Fahidy TZ (1992) The oscillatory behavior of anodic copper dissolution into a NaCl/KSCN electrolyte. Electrochim Acta 37:2637–2644CrossRefGoogle Scholar
  61. 61.
    Gu ZH, Chen J, Fahidy TZ (1994) The effect of process parameters on the anodic dissolution of copper into Nal/KSCN electrolytes. J Electroanal Chem 367:7–14CrossRefGoogle Scholar
  62. 62.
    Jacquet PA (1936) On the anodic behavior of copper in aqueous solutions of orthophosphoric acid. Trans Electrochem Soc 69:629–655CrossRefGoogle Scholar
  63. 63.
    Glarum SH, Marshall JH (1985) The anodic dissolution of copper into phosphoric acid. I. Voltammetric and oscillatory behavior. J Electrochem Soc 132:2872–2878CrossRefGoogle Scholar
  64. 64.
    Glarum SH, Marshall JH (1985) The anodic dissolution of copper into phosphoric acid. II. Impedance behavior. J Electrochem Soc 132:2878–2885CrossRefGoogle Scholar
  65. 65.
    Albahadily FN, Schell M (1988) An experimental investigation of periodic and chaotic electrochemical oscillations in the anodic dissolution of copper in phosphoric acid. J Chem Phys 88:4312–4319CrossRefGoogle Scholar
  66. 66.
    Albahadily FN, Ringland J, Schell M (1989) Mixed-mode oscillations in an electrochemical system. I A Farey sequence which does not occur on a torus. J Chem Phys 90:813–821CrossRefGoogle Scholar
  67. 67.
    Schell M, Albahadily FN (1989) Mixed-mode oscillations in an electrochemical system. II A periodic-chaotic sequence. J Chem Phys 90:822–828CrossRefGoogle Scholar
  68. 68.
    Bard AJ, Faulkner L (2001) Electrochemical methods. Fundamentals and applications. Wiley, New YorkGoogle Scholar
  69. 69.
    Edwards J (1953) The mechanism of electropolishing of copper in phosphoric acid solutions I. processes preceding the establisment of polishing conditions. J Electrochem Soc 100:189C–194CCrossRefGoogle Scholar
  70. 70.
    Tsitsopoulos LT, Tsotsis TT, Webster IA (1987) An ellipsometric investigation of reaction rate oscillations during the electrochemical anodization of Cu in H3PO4 solutions: some preliminary results. Surf Sci 191:225–238CrossRefGoogle Scholar
  71. 71.
    Tsitsopoulos LT, Webster IA, Tsotsis TT (1987) Reaction rate oscillations during the electrochemical anodization of Cu in H3PO4 solutions: XPS and SEM studies. Surf Sci 220:391–406CrossRefGoogle Scholar
  72. 72.
    Doona CJ, Blittersdorf R, Schneider FW (1993) Deterministic chaos arising from homoclinicity in the chlorite thiourea oscillator. J Phys Chem 97:7258–7263CrossRefGoogle Scholar
  73. 73.
    Hudson JL, Mankin JC (1981) Chaos in the Belousov-Zhabotinskii reaction. J Chem Phys 74:6171–6177CrossRefGoogle Scholar
  74. 74.
    Swinney HL, Maselko J (1985) Comment on renormalization, unstable manifold, and fractal structure of mode locking. Phys Rev Lett 55:2366–2366CrossRefGoogle Scholar
  75. 75.
    Maselko J, Swinney HL (1986) Complex periodic oscillation in the Belousov-Zhabotinskii reaction. J Chem Phys 85:6430–6441CrossRefGoogle Scholar
  76. 76.
    Maselko J, Swinney HL (1987) A Farey triangle in the Belousov-Zhabotinskii reaction. Phys Lett A 119:403–406CrossRefGoogle Scholar
  77. 77.
    Strogatz SH (1994) Nonlinear dynamics and chaos. Perseus, MassachussetsGoogle Scholar
  78. 78.
    Epstein IR (1989) The role of flow systems in far-from-equilibrium dynamics. J Chem Educ 66:191–195CrossRefGoogle Scholar
  79. 79.
    Schuster HG, Just W (2005) Deterministic chaos. An introduction. Wiley-VCH, Weinheim, p 139CrossRefGoogle Scholar
  80. 80.
    Kiss IZ, Gáspár V, Nyikos L (1998) Stability analysis of the oscillatory electrodissolution of copper with impedance spectroscopy. J Phys Chem 102:909–914CrossRefGoogle Scholar
  81. 81.
    Kiss IZ, Kazsu Z, Gáspár V (2009) Scaling relationship for oscillating electrochemical systems: dependence of phase diagram on electrode size and rotation rate. Phys Chem Chem Phys 11:7669–7677CrossRefGoogle Scholar
  82. 82.
    Koper MTM, Sluyters JH (1991) Electrochemical oscillators: their description through a mathematical model. J Electroanal Chem 303:73–94CrossRefGoogle Scholar
  83. 83.
    Koper MTM, Gaspard P (1992) The modeling of mixed-mode and chaotic oscillations in electrochemical systems. J Chem Phys 96:7797–7813CrossRefGoogle Scholar
  84. 84.
    Karantonis A, Bourbos E, Koutsaftis D (2010) Electrochemical resonance: frequency response analysis of the electrodissolution of copper in trifluoroacetic acid close to dynamic instabilities. Chem Phys Lett 490:69–71CrossRefGoogle Scholar
  85. 85.
    Potkonjak NI, Potkonjak TN, Blagojević SN, Dudić B, Randlejović DV (2010) Current oscillations during the anodic dissolution of copper in trifluoroacetic acid. Corrosion Sci 52:1618–1624CrossRefGoogle Scholar
  86. 86.
    Hurtado MRF, Sumodjo PTA, Benedetti AV (1993) Electrochemical studies with copper-based alloys open-circuit potential oscillations in alkaline media. J Electrochem Soc 140:1567–1571CrossRefGoogle Scholar
  87. 87.
    Hoar TP, Mowat JAS (1950) Mechanism of electropolishing. Nature (London) 165:64–65CrossRefGoogle Scholar
  88. 88.
    Osterwald J, Feller HG (1960) Periodic phenomena at a nickel electrode in sulfuric acid. J Electrochem Soc 107:473–474CrossRefGoogle Scholar
  89. 89.
    Osterwald J (1962) Zum stabilitätsverhalten stationärer Elektrodenzustände. Electrochim Acta 7:523–532CrossRefGoogle Scholar
  90. 90.
    Lev O, Wolffberg A, Sheintuch M, Pismen LM (1988) Bifurcations to periodic and chaotic motions in anodic nickel dissolution. Chem Eng Sci 43:1339–1353CrossRefGoogle Scholar
  91. 91.
    Lev O, Wolffberg A, Pismen LM, Sheintuch M (1989) The structure of complex behavior in anodic nickel dissolution. J Phys Chem 93:1661–1666CrossRefGoogle Scholar
  92. 92.
    Haim D, Lev O, Pismen LM, Sheintuch M (1992) Modeling periodic and chaotic dynamics in anodic nickel dissolution. J Phys Chem 96:2676–2681CrossRefGoogle Scholar
  93. 93.
    Koper MTM (1998) Non-linear phenomena in electrochemical systems. J Chem Soc Faraday Trans 94:1369–1378CrossRefGoogle Scholar
  94. 94.
    Indira KS, Rangarajan SK, Doss KSG (1969) Further studies on periodic phenomena in passivating systems. J Electroanal Chem 21:57–68CrossRefGoogle Scholar
  95. 95.
    Keddam M, Takenouti H, Yu N (1985) Transpassive dissolution of Ni in acidic sulfate media: a kinetic model. J Electrochem Soc 132:2561–2566CrossRefGoogle Scholar
  96. 96.
    Doss KSG, Deshmukh D (1976) Electrochemical potential oscillations. The nickel-sulphuric acid system. J Electroanal Chem 70:141–156CrossRefGoogle Scholar
  97. 97.
    Lev O, Sheintuch M, Yarnitzky H, Pismen LM (1990) Spatial current distribution during nickel anodic dissolution in sulfuric acid. Chem Eng Sci 45:839–847CrossRefGoogle Scholar
  98. 98.
    Gregori J, García-Jareño JJ, Keddam M, Vicente F (2007) A kinetic interpretaion of a negative time constant in impedance equivalent circuits for the dissolution/passive transition. Electrochim Acta 52:7903–7909CrossRefGoogle Scholar
  99. 99.
    Scherer J, Ocko BM, Magnussen OM (2003) Structure, dissolution, and passivation of Ni(111) electrodes in sulfuric acid solution: an in situ STM, X-ray scattering, and electrochemical study. Electrochim Acta 48:1169–1191CrossRefGoogle Scholar
  100. 100.
    Nakamura M, Ikemiya N, Iwasaki A, Suzuki Y, Ito M (2004) Surface structures at the initial stages in passive film formation on Ni(111) electrodes in acidic electrolytes. J Electroanal Chem 566:385–391CrossRefGoogle Scholar
  101. 101.
    Gregori J, García-Jareño JJ, Giménez-Romero D, Vicente F (2005) Kinetic calculations of the Ni anodic dissolution from EIS. J Solid State Electrochem 9:83–90CrossRefGoogle Scholar
  102. 102.
    Gregori J, García-Jareño JJ, Giménez-Romero D, Vicente F (2006) Calculation of the rate constants of nickel electrodissolution in acid medium from EIS. J Solid State Electrochem 10:920–928CrossRefGoogle Scholar
  103. 103.
    Koper MTM, Aguda BD (1996) Experimental demonstration of delay and memory effects in the bifurcations of nickel electrodissolution. Phys Rev E 54:960–963CrossRefGoogle Scholar
  104. 104.
    Habermann R (1979) Slowly varying jump and transition phenomena associated with algebraic bifurcation problem. SIAM J Appl Math 37:69–106CrossRefGoogle Scholar
  105. 105.
    Erneux T, Laplante JP (1989) Jump transition due to a time-dependent bifurcation parameter in the bistable iodate-arsenous acid reaction. J Chem Phys 90:6129–6134CrossRefGoogle Scholar
  106. 106.
    Baer SM, Erneux T, Rinzel J (1989) The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J Appl Math 49:55–71CrossRefGoogle Scholar
  107. 107.
    Holden L, Erneux T (1993) Slow passage through a Hopf bifurcation: frm oscillations to steady state solutions. SIAM J Appl Math 53:1045–1058CrossRefGoogle Scholar
  108. 108.
    Hudson JL, Bell JC, Jaeger NI (1988) Potentiostatic current oscillations of cobalt electrodes in hydrochloric acid/chromic acid electrolytes. Ber Bunsenges Phys Chem 92:1383–1387Google Scholar
  109. 109.
    Sazou D, Pagitsas M, Kokkinidis G (1990) Current oscillations during electrodissolution of a cobalt electrode induced by the presence of nitrate ions in sulphuric acid solutions. J Electroanal Chem 289:217–235CrossRefGoogle Scholar
  110. 110.
    Sazou D, Pagitsas M (1991) Polarization behaviour of a cobalt rotating disc electrode in sulphuric acid solutions in the absence and presence of chloride ions. J Electroanal Chem 304:171–185CrossRefGoogle Scholar
  111. 111.
    Sazou D, Pagitsas M (1991) Periodic and aperiodic current oscillations induced by the presence of chloride ions during electrodissolution of a cobalt electrode in sulfuric acid solutions. J Electroanal Chem 312:185–203CrossRefGoogle Scholar
  112. 112.
    Sazou D, Pagitsas M (1993) Current oscillations associated with pitting corrosion processes induced by iodide ions on the partially passive cobalt surface polarized in sulphuric acid solutions. Electrochim Acta 38:835–845CrossRefGoogle Scholar
  113. 113.
    Pagitsas M, Sazou D (1995) The effect of a sinusoidal potential perturbation on the active-passive transition region of cobalt in a phosphoric acid solution. J Electroanal Chem 386:89–99CrossRefGoogle Scholar
  114. 114.
    Pagitsas M, Sazou D (1995) Experimental bifurcation analysis of the cobalt/phosphoric acid electrochemical oscillator. Electrochim Acta 40:755–766CrossRefGoogle Scholar
  115. 115.
    Alonzo V, Darchen A, Le Fur E, Pivan JY (2002) Electrosynthesis of vanadophosphate by anodic oxidation of vanadium in phosphoric acid solutions. Electrochem Commun 4:877–880CrossRefGoogle Scholar
  116. 116.
    Alonzo V, Darchen A, Le Fur E, Pivan JY (2006) Electrochemical behaviour of a vanadium anode in phosphoric acid and phosphate solutions. Electrochim Acta 51:1990–1995CrossRefGoogle Scholar
  117. 117.
    Gorzkowski MT, Wesołowska A, Jurczakowski R, Ślepski P, Darowicki K, Orlik M (2011) Electrochemical oscillations and bistability during anodic dissolution of vanadium electrode in acidic media—Part I. Experiment. J Solid State Electrochem 15:2311–2320. doi: 10.1007/s10008-011-1463-z CrossRefGoogle Scholar
  118. 118.
    Gorzkowski MT, Orlik M (2011) Electrochemical oscillations and bistability during anodic dissolution of vanadium electrode in acidic media—Part II. The model. J Solid State Electrochem 15:2321–2330. doi: 10.1007/s10008-011-1464-y CrossRefGoogle Scholar
  119. 119.
    Gilbertson LI, Fertner WO (1942) Trans Electrochem Soc 81:199CrossRefGoogle Scholar
  120. 120.
    Feancis HT, Colner WH (1950) Cyclic phenomena observed in the electropolishing of silver. J Electrochem Soc 97:237–240CrossRefGoogle Scholar
  121. 121.
    Lal H, Thirsk HR, Wynne-Jones WFK (1951) A study of the behaviour of polarized electrodes. Part I. The silver/silver halide system. Trans Faraday Soc 47:70–77CrossRefGoogle Scholar
  122. 122.
    Lal H, Thirsk HR, Wynne-Jones WFK (1951) The anodic polarization of silver in halide solutions. Part II. Periodic phenomena occurring during polarization. Trans Faraday Soc 47:999–1006CrossRefGoogle Scholar
  123. 123.
    Corcoran SG, Sieradzki K (1992) Chaos during a growth of an articficial pit. J Electrochem Soc 139:1568–1573CrossRefGoogle Scholar
  124. 124.
    Franck UF (1958) Instabilitätserscheinungen an passiviebaren Metallen. Z Elektrochem 62:649–655Google Scholar
  125. 125.
    Vetter K (1967) Electrochemical kinetics. Academic, New YorkGoogle Scholar
  126. 126.
    Podestá JJ, Piatti RCV, Arviá AJ (1979) Periodic current oscillations at the gold/acid aqueous interfaces induced by HCl additions. Electrochim Acta 24:633–638CrossRefGoogle Scholar
  127. 127.
    Diard JP, Le Gorrec B, Saint-Aman E (1983) Etude des structures de dissolution anodique de l or en milieu acide. Electrochim Acta 28:1211–1213CrossRefGoogle Scholar
  128. 128.
    Li ZL, Wu TH, Niu ZJ, Huang W, Nie HD (2004) In situ Raman spectroscopic studies of the current oscillations during gold electrodissolution in HCl solutions. Electrochem Commun 6:44–48CrossRefGoogle Scholar
  129. 129.
    Mao BW, Ren BM, Cai XW, Xiong LH (1995) Electrochemical oscillatory behavior under a scanning microscopic configuration. J Electroanal Chem 394:155–160CrossRefGoogle Scholar
  130. 130.
    Zheng J, Huang W, Chen S, Niu Z, Li Z (2006) New oscillatory phenomena during gold electrodissolution in sulfuric acid containing Br or in concentrated HCl. Electrochem Commun 8:600–604CrossRefGoogle Scholar
  131. 131.
    Bargeron CB, Givens RB (1977) Source of oscillations in the anode current during the potentiostatic pitting of aluminum. J Electrochem Soc 124:1230–1232CrossRefGoogle Scholar
  132. 132.
    Wilhelmsen W, Arnesen T, Hasvold Ø, Størkersen WJ (1991) The electrochemical behavior of Al-In alloys in alkaline electrolytes. Electrochim Acta 36:79–85CrossRefGoogle Scholar
  133. 133.
    Lee W, Kim JC, Gösele U (2010) Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Adv Funct Mater 20:21–27CrossRefGoogle Scholar
  134. 134.
    Grauer R, Wehr P, Engell HJ (1969) Electron-optical and electrochemical investigation into the passivation behavior of fine lead in hot concentrated sulfuric acid. Werkst Korros 20:94–98CrossRefGoogle Scholar
  135. 135.
    Abd El Aal EE (1992) Effect of chlorate and perchlorate anions on lead passivity in NaOH solutions under galvanostatic conditions. Corrosion 48:482–488CrossRefGoogle Scholar
  136. 136.
    Bhaskara Rao ML (1967) Electrochemical studies on lead in organic electrolytes. J Electrochem Soc 114:665–668CrossRefGoogle Scholar
  137. 137.
    Hull MN, Ellison JE, Toni JE (1970) The anodic behavior of zinc electrodes in potassium hydroxide electrolytes. J Electrochem Soc 117:192–198CrossRefGoogle Scholar
  138. 138.
    Hull MN, Toni JE (1971) Formation and reduction of films on amalgamated and non-amalgamated zinc electrodes in alkaline solutions. Trans Faraday Soc 67:1128–1136CrossRefGoogle Scholar
  139. 139.
    Podesta JJ, Piatti RCV, Arvia AJ (1982) Comparative electron microscopy (SEM) examination of Fe, Au and Zn electrodes surfaces polarized in different regions of potentiostatic I/E behavior. Corrosion NACE 38:599CrossRefGoogle Scholar
  140. 140.
    McKubre MCH, Macdonald DD (1981) The dissolution and passivation of zinc in concentrated aqueous hydroxide. J Electrochem Soc 128:524–530CrossRefGoogle Scholar
  141. 141.
    Frackowiak E, Kiciak M (1988) Application of the rotating disk electrode for the investigation of polycrystalline zinc in concentrated alkaline solutions with admixture of polyethylene glycol. Electrochim Acta 33:441–443CrossRefGoogle Scholar
  142. 142.
    Shams El Din AM, Abd El Wahab FM (1964) On the anodic passivity of tin in alkaline solutions. Electrochim Acta 9:883–896CrossRefGoogle Scholar
  143. 143.
    Shams El Din AM, Kamel LA (1972) Studies on the anodic and cathodic polarization of amalgams—V. The behaviour of tin amalgams in alkaline solutions. Electrochim Acta 17:491–501CrossRefGoogle Scholar
  144. 144.
    Strirrup BN, Hampson NA (1976) Anodic passivation of Sn in sodium hydroxide solutions. J Electroanal Chem 67:45–56CrossRefGoogle Scholar
  145. 145.
    Drogowska M, Brossard L, Menard H (1991) Influence of chloride ions on the anodic dissolution of tin in bicarbonate and phosphate solutions at pH 8. J Electrochem Soc 138:1243–1250CrossRefGoogle Scholar
  146. 146.
    Vicentini B, Sinigaglia D, Taccani G (1975) Crevice corrosion of titanium. Behaviour of galvanic cell between shielded and unshielded titanium in sulphuric acid. Corrosion Sci 15:479–492CrossRefGoogle Scholar
  147. 147.
    Okada T (1981) The pitting potential of titanium in bromide solutions. Dengi Kagaku Oyobi Kogyo Butsuri Kagaku 49:584Google Scholar
  148. 148.
    Warczak M, Sadkowski A (2009) Oscillatory regime of titanium anodization under voltage control. Electrochem Commun 11:1733–1735CrossRefGoogle Scholar
  149. 149.
    Ammar IA, Khalil MW (1971) Behavior of bismuth as valve metal in phosphate, borate, benzoate and tartrate solutions. J Electroanal Chem 32:373–386CrossRefGoogle Scholar
  150. 150.
    Galushko VP, Zavgorodnaya EF, Podol’skaya NV, Tukhaya OK (1972) Cadmium behavior during an anodic oxidation in alkaline solution. Ukr Khim Zh 38:432Google Scholar
  151. 151.
    Kadaner LI, Fedchenko VM, Ermolov IB (1981) Periodic phenomena in the electrochemical dissolution of niobium under alternating current conditions. Elektrokhimiya 17:138Google Scholar
  152. 152.
    Engelgardt GR, Dikusar AI (1986) Thermokinetic instability of electrode processes: part I. Theoretical analysis. J Electroanal Chem 207:1–9CrossRefGoogle Scholar
  153. 153.
    Schuster R, Kirchner V, Allongue P, Ertl G (2000) Electrochemical micromachining. Science 289:98–101. doi: 10.1126/science.289.5476.98 CrossRefGoogle Scholar
  154. 154.
    Schöll E (2005) Nonlinear spatio-temporal dynamics and chaos in semiconductors. Cambridge University Press, CambridgeGoogle Scholar
  155. 155.
    Josseaux P, Micheau JC, Kirsch de Mesmaeker A (1985) Photocurrent oscillations at photoanodes of CdS films. Electrochim Acta 30:1093–1094CrossRefGoogle Scholar
  156. 156.
    Marcu V, Tenne R (1988) Photocurrent oscillations in the CdTe electrolyte systems. J Phys Chem 92:7089–7092CrossRefGoogle Scholar
  157. 157.
    Marcu V, Strehblow HH (1991) Current oscillations of Cd0.2Hg0.8Te in a Na2S-CsOH solution. Electrochim Acta 36:869–875CrossRefGoogle Scholar
  158. 158.
    Turner DR (1958) Electropolishing silicon in hydrofluoric acid solutions. J Electrochem Soc 105:402–408CrossRefGoogle Scholar
  159. 159.
    Gerischer H, Lübke M (1988) Electrolytic growth and dissolution of oxide layers on silicon in aqueous solutions of fluorides. Ber Bunsenges phys Chem 92:573–577Google Scholar
  160. 160.
    Chazalviel JN, Etman E, Ozanam F (1991) A voltammetric study of the anodic dissolution of p-Si in fluoride electrolytes. J Electroanal Chem 297:533–540CrossRefGoogle Scholar
  161. 161.
    Ozanam F, Chazalviel JN, Radi A, Etman M (1991) Current oscillations in the anodic dissolution of silicon in fluoride electrolytes. Ber Bunsenges Phys Chem 95:98–101CrossRefGoogle Scholar
  162. 162.
    Ozanam F, Chazalviel JN, Radi A, Etman M (1992) Resonant and nonresonant behavior of the anodic dissolution of silicon in fluoride media. An impedance study. J Electrochem Soc 139:2491–2501CrossRefGoogle Scholar
  163. 163.
    Chazalviel JN, Ozanam F (1992) A theory for the resonant response of an electrochemical system: self-oscillating domains, hidden oscillation, and synchronization impedance. J Electrochem Soc 139:2501–2508CrossRefGoogle Scholar
  164. 164.
    Stumper J, Greef R, Peter LM (1991) Current oscillations during anodic dissolution of p-Si in ammonium fluoride: an investigation using ring-disc voltammtetry and ellipsometry. J Electroanal Chem 310:445–452CrossRefGoogle Scholar
  165. 165.
    Blackwood DJ, Borazio A, Greef R, Peter LM, Stumper J (1992) Electrochemical and optical studies of silicon dissolution in ammonium fluoride solutions. Electrochim Acta 37:889–896CrossRefGoogle Scholar
  166. 166.
    Lewerenz HJ, Schlichthörl G (1992) Light-induced oscillating reactions of silicon in ammonium fluoride solutions: part 1. Simultaneous photocurrent and excess microwave reflectivity measurements. J Electroanal Chem 327:85–92CrossRefGoogle Scholar
  167. 167.
    Lewerenz HJ (1992) Anodic oxides on silicon. Electrochim Acta 37:847–864CrossRefGoogle Scholar
  168. 168.
    Lewerenz HJ, Aggour M (1993) On the origin of photocurrent oscillation at Si electrodes. J Electroanal Chem 351:159–168CrossRefGoogle Scholar
  169. 169.
    Ozanam F, Chazalviel JN (1993) In-situ infrared characterization of the electrochemical dissolution of silicon in a fluoride electrolyte. J Electron Spectrosc Relat Phenom 64(65):395–402CrossRefGoogle Scholar
  170. 170.
    Hassan HH, Sculfort JL, Etman M, Ozanam F, Chazalviel JN (1995) Kinetic and diffusional limitations to the anodic dissolution of p-Si in fluoride media. J Electroanal Chem 380:55–61CrossRefGoogle Scholar
  171. 171.
    Nast O, Rauscher S, Jungblut H, Lewerenz HJ (1998) Micromorphology changes of silicon oxide on Si(111) during current oscillations: a comparative in situ AFM and FTIR study. J Electroanal Chem 422:169–174Google Scholar
  172. 172.
    Ozanam F, Blanchard N, Chazalviel JN (1993) Microscopic, self-oscillating domains at the silicon surface during its anodic dissolution in a fluoride electrolyte. Electrochim Acta 38:1627–1630CrossRefGoogle Scholar
  173. 173.
    Chazalviel JN, Ozanam F (2010) Current oscillations in the anodic dissolution of silicon: on the origin of a sustained oscillation on the macroscopic scale. Electrochim Acta 55:656–665CrossRefGoogle Scholar
  174. 174.
    Safi M, Chazalviel JN, Cherkaoui M, Belaïdi A, Gorochov O (2002) Etching of n-type silicon in (HF+oxidant) solutions: in situ characterization of surface chemistry. Electrochim Acta 47:2573–2581CrossRefGoogle Scholar
  175. 175.
    Amin MA, Frey S, Ozanam F, Chazalviel JN (2008) Macromorphologies in electrochemically formed porous silica. Electrochim Acta 53:4485–4494CrossRefGoogle Scholar
  176. 176.
    Slimani A, Iratni A, Chazalviel JN, Gabouze N, Ozanam F (2009) Experimental study of macropore formation in p-type silicon in a fluoride solution and the transition between macropore formation and electropolishing. Electrochim Acta 54:3139–3144CrossRefGoogle Scholar
  177. 177.
    Föll H, Carstensen J, Christophersen M, Hasse G (2000) A new view of silicon electrochemistry. Phys Stat Sol A 182:7–16CrossRefGoogle Scholar
  178. 178.
    Hasse G, Christophersen M, Carstensen J, Föll H (2000) New insights into Si electrochemistry and pore growth by transient measurements and impedance spectroscopy. Phys Stat Sol A 182:23–29CrossRefGoogle Scholar
  179. 179.
    Lölkes S, Christophersen M, Langa S, Carstensen J, Föll H (2003) Selforganized formation of crystallographically oriented octahedral cavities during electrochemical pore etching. Mater Sci Eng B101:159–163CrossRefGoogle Scholar
  180. 180.
    Christophersen M, Langa S, Carstensen J, Tiginyanu IM, Föll H (2003) A comparison of pores in silicon and pores in III-V compounds materials. Phys Stat Sol A 197:197–203CrossRefGoogle Scholar
  181. 181.
    Chazalviel JN, Wehrspohn RB, Ozanam F (2000) Electrochemical preparation of porous semiconductors: from phenomenology to understanding. Mater Sci Eng B69–B70:1–10CrossRefGoogle Scholar
  182. 182.
    Parkhutik VP, Sasano J, Ogata Y, Matveeva E (2003) Oscillatory electrochemical reaction at corroding silicon surface. Proc SPIE 5114:396–405CrossRefGoogle Scholar
  183. 183.
    Parkhutik VP (2006) Oscillations of open-circuit potential during immersion plating of silicon in CuSO4/HF solutions. Russ J Electrochem 42:512–522CrossRefGoogle Scholar
  184. 184.
    Lehmann V (2002) Electrochemistry of silicon. Instrumentation, science, materials and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marek Orlik
    • 1
  1. 1.Faculty of ChemistryUniversity of WarsawWarsawPoland

Personalised recommendations