Temporal Instabilities in Anodic Oxidation of Small Molecules/Ions at Solid Electrodes

  • Marek Orlik
Part of the Monographs in Electrochemistry book series (MOEC)


Dynamic instabilities associated with anodic oxidation of small molecules and ions: hydrogen, carbon monoxide, formaldehyde, formate ions, alcohols: methanol, ethanol, 2-propanol and 1-butanol, and sulfide ions at solid (mainly polycrystalline and single crystal Pt electrodes) are described. Electrooxidation of most of these molecules is of significant practical importance due to their application, e.g., in the fuel cells. Understanding of the reaction mechanism and control of associated instabilities can improve the efficiency of such cells. Also, their course can exhibit analogies with the characteristics of nerve excitation. In spite of simplicity of the structure of the above-mentioned molecules or ions, their electrocatalytic oxidation processes exhibit a rich variety of dynamic instabilities, corresponding to properties of N-NDR, S-NDR, and HN-NDR systems. These dynamic instabilities include also excitability and experimentally rarely reported phenomenon of tristability. In particular, the electrooxidation of CO constitutes an important subsystem in the anodic processes of other organic molecules, as CO is an intermediate which poisons the Pt surface. The reported dynamic instabilities are discussed in terms of relevant electrochemical mechanisms, supported by appropriate numerical modeling and bifurcation analysis. In addition, the oscillatory oxidations of hydrazine, ethylene, iodide ions and graphite are briefly characterized.


Hopf Bifurcation Electrode Potential Methanol Oxidation Current Oscillation Electrochemical Quartz Crystal Microbalance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Koper MTM, Sluyters JH (1994) Instabilities and oscillations in simple models of electrocatalytic surface reactions. J Electroanal Chem 371:149–159CrossRefGoogle Scholar
  2. 2.
    Thalinger M, Volmer M (1930) Z phys Chem 150:401Google Scholar
  3. 3.
    Armstrong G, Butler JAV (1947) Electrochemical periodicities in the anodic polarisation of platinum electrodes in the presence of hydrogen and their significance. Disc Faraday Soc 1:122–141CrossRefGoogle Scholar
  4. 4.
    Sawyer DT, Seo ET (1963) Electrochemistry of dissolved gases III. Oxidation of hydrogen at platinum electrodes. J Electroanal Chem 5:23–24Google Scholar
  5. 5.
    Conway BE, Novak DM (1977) Oscillatory kinetics in electrochemical oxidation of hydrogen in an almost anhydrous solvent. J Phys Chem 81:1459–1468CrossRefGoogle Scholar
  6. 6.
    Horányi G, Visy C (1979) Potential oscillations in the course of galvanostatic oxidation of hydrogen at platinum electrode in the presence of electrosorbing cations. J Electroanal Chem 103:353–361CrossRefGoogle Scholar
  7. 7.
    Kodera T, Yamazaki T, Kubota N (1986) Verification of potential oscillation caused by metal deposition and dissolution. Electrochim Acta 31:1477–1478CrossRefGoogle Scholar
  8. 8.
    Kodera T, Yamazaki T, Masuda M, Ohnishi R (1988) Limit cycle in electrochemical oscillation—potential oscillation during anodic oxidation of H2. Electrochim Acta 33:537–540CrossRefGoogle Scholar
  9. 9.
    Yamazaki T, Kodera T (1989) Potential oscillation during anodic oxidation of hydrogen at a platinum electrode. I. Experimental. Electrochim Acta 34:969–975CrossRefGoogle Scholar
  10. 10.
    Yamazaki T, Kodera T, Ohnishi R, Masuda M (1990) Potential oscillation during anodic oxidation of hydrogen at a platinum electrode. II. Kinetic analysis. Electrochim Acta 35:431–435CrossRefGoogle Scholar
  11. 11.
    Krischer K, Lübke M, Wolf W, Eiswirth M, Ertl G (1991) Chaos and interior crisis in an electrochemical reaction. Ber Bunsenges Phys Chem 95:820–823CrossRefGoogle Scholar
  12. 12.
    Eiswirth M, Lübke M, Krischer K, Wolf W, Hudson JL, Ertl G (1992) Structural effects on the dynamics of an electrocatalytic oscillator. Chem Phys Lett 192:254–258CrossRefGoogle Scholar
  13. 13.
    Krischer K, Lübke M, Eiswirth M, Wolf W, Hudson JL, Ertl G (1993) A hierarchy of transitions to mixed mode oscillations in an electrochemical system. Physica D 62:123–133CrossRefGoogle Scholar
  14. 14.
    Thompson JMT, Stewart HB (1987) Nonlinear dynamics and chaos. Wiley, ChichesterGoogle Scholar
  15. 15.
    Ott E (2006) Crises. Scholarpedia 1(10):1700. doi: 10.4249/scholarpedia.1700 CrossRefGoogle Scholar
  16. 16.
    Grebogi C, Ott E, Yorke JA (1983) Crises: sudden changes in chaotic attractors and chaotic transients. Physica D 7:181–200CrossRefGoogle Scholar
  17. 17.
    Michaelis R, Zei MS, Zhai RS, Kolb DM (1992) The effect of halides on the structure of copper underpotential-deposited onto Pt(111): a low-energy electron diffraction and X-ray photoelectron spectroscopy study. J Electroanal Chem 339:299–310CrossRefGoogle Scholar
  18. 18.
    Markovic N, Ross PN (1993) Effect of anions on the underpotential deposition of copper on platinum(111) and platinum(100) surfaces. Langmuir 9:580–590CrossRefGoogle Scholar
  19. 19.
    Krischer K, Lübke M, Wolf W, Eiswirth M, Ertl G (1995) Oscillatory dynamics of the electrochemical oxidation of H2 in the presence of Cu2+: structure sensitivity and the role of anions. Electrochim Acta 40:69–81CrossRefGoogle Scholar
  20. 20.
    Wolf W, Krischer K, Lübke M, Eiswirth M, Ertl G (1995) Modeling oscillations in galvanostatic H2 oxidation at Pt in the presence of metal ions. J Electroanal Chem 385:85–93CrossRefGoogle Scholar
  21. 21.
    Wolf W, Lübke M, Koper MTM, Krischer K, Eiswirth M, Ertl G (1995) Experimental and theoretical description of potentiostatic current oscillations during H2 oxidation. J Electroanal Chem 399:185–196CrossRefGoogle Scholar
  22. 22.
    Vetter KJ (1961) Elektrochemische Kinetik. Springer, BerlinGoogle Scholar
  23. 23.
    Breiter M (1962) Über die Art der Wasserstoffadsorption an Platinmetallelektroden. Electrochim Acta 7:25–38CrossRefGoogle Scholar
  24. 24.
    Will FG (1965) Hydrogen adsorption on platinum single crystal electrodes. I. Isotherms and heats of adsorption. J Electrochem Soc 112:451–455CrossRefGoogle Scholar
  25. 25.
    Joncich MJ, Hackermann N (1953) The reaction of hydrogen and oxygen on submerged platinum electrode catalysts. I. Effect of stirring, temperature and electric polarization. J Phys Chem 57:674–678CrossRefGoogle Scholar
  26. 26.
    Strasser P, Eiswirth M, Ertl G (1997) Oscillatory instabilities during formic acid oxidation on Pt(100), Pt(110) and Pt(111) under potentiostatic control. II. Model calculations. J Chem Phys 107:991–1003CrossRefGoogle Scholar
  27. 27.
    Gasteiger HA, Markovic NM, Ross PN (1995) H2 and CO electrooxidation on well-characterized Pt, Ru and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99:8290–8301CrossRefGoogle Scholar
  28. 28.
    Gasteiger HA, Markovic NM, Ross PN (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 2. Rotating disk electrode studies of CO/H2 mixtures at 62 degree C. J Phys Chem 99:16757–16767CrossRefGoogle Scholar
  29. 29.
    Koper MTM, Schmidt TJ, Marković RPN (2001) Potential oscillations and S-shaped polarization curve in the continuous electro-oxidation of CO on platinum single-crystal electrodes. J Phys Chem B 105:8381–8386CrossRefGoogle Scholar
  30. 30.
    Samjeské G, Komatsu K, Osawa M (2009) Dynamics of CO oxidation on a polycrystalline platinum electrode: a time-resolved infrared study. J Phys Chem C 113:10222–10228CrossRefGoogle Scholar
  31. 31.
    Maikhandi S, Bonnefont A, Krischer K (2005) Strictly potentiostatic current oscillations during bulk CO electro-oxidation on platinum in the presence of inhibiting anions. Electrochem Commun 7:710–716CrossRefGoogle Scholar
  32. 32.
    Malkhandi S, Bonnefont A, Krischer K (2009) Dynamic instabilities during the continuous electro-oxidation of CO on poly- and single crystalline Pt electrodes. Surface Sci 603:1646–1651CrossRefGoogle Scholar
  33. 33.
    Turner JE, Sales BC, Maple MB (1981) Oscillatory oxidation of CO over a Pt catalyst. Surf Sci 103:54–74CrossRefGoogle Scholar
  34. 34.
    Turner JE, Sales BC, Maple MB (1982) Oscillatory oxidation of CO over a Pt, Pd and Ir catalysts: theory. Surf Sci 114:381–394CrossRefGoogle Scholar
  35. 35.
    Ertl G (1990) Oscillatory catalytic reactions at single-crystal surfaces. Adv Catal 37:213–277CrossRefGoogle Scholar
  36. 36.
    Imbihl R (1993) Oscillatory reactions on single crystal surfaces. Prog Surf Sci 44:185–343CrossRefGoogle Scholar
  37. 37.
    Imbihl R, Ertl G (1995) Oscillatory kinetics in heterogeneous catalysis. Chem Rev 95:697–733CrossRefGoogle Scholar
  38. 38.
    Ertl G (1995) Oscillatory kinetics and spatio-temporal self-organization in reactions at solid surfaces. Science 254:1750–1755CrossRefGoogle Scholar
  39. 39.
    Ertl G, Rotermund HH (1996) Spatiotemporal pattern formation in reactions at surfaces. Curr Op Solid State Mat Sci 1:617–621CrossRefGoogle Scholar
  40. 40.
    Chorkendorff I, Niemantsverdriet JW (2007) Concepts of modern catalysis and kinetics, 2nd edn. Wiley, Weinheim, p 72Google Scholar
  41. 41.
    Eiswirth M, Bürger J, Strasser P, Ertl G (1996) Oscillating Langmuir-Hinshelwood mechanism. J Phys Chem 100:19118–19123CrossRefGoogle Scholar
  42. 42.
    Bonnefont A, Varela H, Krischer K (2003) Stationary small and large amplitude patterns during bulk CO electrooxidation on platinum. ChemPhysChem 4:1260–1263CrossRefGoogle Scholar
  43. 43.
    Bonnefont A, Varela H, Krischer K (2005) Stationary spatial patterns during bulk CO electrooxidation on platinum. J Phys Chem B 109:3408–3415CrossRefGoogle Scholar
  44. 44.
    Morschl R, Bolten J, Bonnefont A, Krischer K (2008) Pattern formation during CO electrooxidation on thin Pt films studied with spatially resolved infrared absorption spectroscopy. J Phys Chem C 112:9548–9551CrossRefGoogle Scholar
  45. 45.
    Fink T, Dath JP, Imbihl R, Ertl G (1991) Kinetic oscillations in the NO + CO reaction on Pt(100): experiments and mathematical modeling. J Chem Phys 95:2109–2126CrossRefGoogle Scholar
  46. 46.
    Imbihl R, Fink T, Krischer K (1992) Bifurcation analysis of the three-variable model for the NO + CO reaction on Pt surfaces. J Chem Phys 96:6236–6248CrossRefGoogle Scholar
  47. 47.
    Siegmeier J, Baba N, Krischer K (2007) Bistability and oscillations during electrooxidation of H2-CO mixtures on Pt: modeling and bifurcation analysis. J Phys Chem C 111:13481–13489CrossRefGoogle Scholar
  48. 48.
    Deibert MC, Williams DL (1969) Voltage oscillations of the H2-CO system. J Electrochem Soc 116:1290–1292CrossRefGoogle Scholar
  49. 49.
    Szpak S (1970) Potential oscillations of the H2-CO system at low CO content. J Electrochem Soc 117:1056–1058CrossRefGoogle Scholar
  50. 50.
    Yamazaki T, Kodera T (1990) Potential oscillation of Pt electrode in H2SO4 solution during the anodic oxidation of H2 and CO. Electrochim Acta 36:639–646CrossRefGoogle Scholar
  51. 51.
    Zhang J, Datta R (2002) Sustained potential oscillations in proton exchange membrane fuel cells with Pt Ru as anode catalyst. J Electrochem Soc 149:A1423–A1431CrossRefGoogle Scholar
  52. 52.
    Zhang J, Datta R (2004) Higher power output in a PEMFC operating under autonomous oscillatory conditions in the presence of CO. Electrochem Solid State Lett 7:A37–A40CrossRefGoogle Scholar
  53. 53.
    Zhang J, Datta R (2005) Electrochemical preferential oxidation of CO in reformate. J Electrochem Soc 152:A1180–A1187CrossRefGoogle Scholar
  54. 54.
    Zhang J, Fehribach JD, Datta R (2004) Mechanistic and bifurcation analysis of anode potential oscillations in PEMFCs with CO in anode feed. J Electrochem Soc 151:A689–A697CrossRefGoogle Scholar
  55. 55.
    Kiss IZ, Brackett AW, Hudson JL (2004) Nonuniform reaction rates during CO and CO/H2 oxidation on coupled Pt electrodes. J Phys Chem B 108:14599–14608CrossRefGoogle Scholar
  56. 56.
    Beden B, Bewick A (1980) Oscillatory kinetics in the electrochemical oxidation of formate ions during the deposition of rhodium electrode. Part I. Experimental observation. J Electroanal Chem 107:127–145CrossRefGoogle Scholar
  57. 57.
    Morgan JS (1916) The periodic evolution of carbon monoxide. J Chem Soc 109:274–283CrossRefGoogle Scholar
  58. 58.
    Showalter K, Noyes RM (1978) Oscillations in chemical systems. 24. Oscillatory decomposition of formic acid in sulfuric acid. J Am Chem Soc 100:1042–1049CrossRefGoogle Scholar
  59. 59.
    Raw CJG, Frierdich J, Perrino F, Jex G (1978) Oscillatory gas evolution from the system formic acid-concentrated sulfuric acid-concentrated nitric acid. J Phys Chem 82:1952–1953CrossRefGoogle Scholar
  60. 60.
    Müller E, Tanaka S (1928) Über die pulsierende elektrolytische Oxydation der Ameisensäure. Z Elektrochem 34:256–264Google Scholar
  61. 61.
    Wojtowicz J, Marincic N, Conway BE (1968) Oscillatory kinetics in the electrochemical oxidation of formate and ethylene. J Chem Phys 48:4333–4345CrossRefGoogle Scholar
  62. 62.
    Beden B, Lamy C, Bewick A (1981) Oscillatory kinetics in the electrochemical oxidation of formate ions during the deposition of rhodium electrode. Part II. Mechanistic considerations. J Electroanal Chem 121:115–124CrossRefGoogle Scholar
  63. 63.
    Bockris JO’M, Conway BE, Yeager E, White RE (1981) Comprehensive treatise of electrochemistry, vol 3. Plenum, New YorkCrossRefGoogle Scholar
  64. 64.
    Cai X, Schell M (1992) Observation of bistability in cyclic voltammetric experiments on ethanol, propanol, butanol and formic acid/formate. Electrochim Acta 37:673–680CrossRefGoogle Scholar
  65. 65.
    Xu Y, Schell M (1990) Bistability and oscillations in the electrocatalyzed oxidation of formaldehyde. J Phys Chem 94:7137–7143CrossRefGoogle Scholar
  66. 66.
    Schell M, Albahadily FN, Safar J, Xu Y (1989) Characterization of oscillatory states in the electrochemical oxidation of formaldehyde and formate/formic acid. J Phys Chem 93:4806–4810CrossRefGoogle Scholar
  67. 67.
    Albahadily FN, Schell M (1991) Observation of several different temporal patterns in the oxidation of formic acid at a rotating platinum-disk electrode in an acidic medium. J Electroanal Chem 308:151–173CrossRefGoogle Scholar
  68. 68.
    Inzelt G, Kertész V (1993) Experimental evidence for the periodical changes of the amount of chemisorbed species accompanying the potential oscillations produced in the course of galvanostatic oxidation of formic acid on platinum. Electrochim Acta 38:2385–2386CrossRefGoogle Scholar
  69. 69.
    Inzelt G, Kertész V (1995) Enhanced frequency oscillations accompanying galvanostatic potential oscillations at Pt electrode in Cu2+ formic acid systems. Electrochim Acta 40:221–225CrossRefGoogle Scholar
  70. 70.
    Inzelt G, Kertész V (1997) Effect of poly(aniline) pseudocapacitance on potential and EQCM frequency oscillations arising in the course of galvanostatic oxidation of formic acid on platinum. Electrochim Acta 42:229–235CrossRefGoogle Scholar
  71. 71.
    Raspel F, Nichols RJ, Kolb DM (1990) Current oscillations during formic acid oxidation on Pt(100). J Electroanal Chem 286:279–283CrossRefGoogle Scholar
  72. 72.
    Raspel F, Eiswirth M (1994) Current oscillations in the electrochemical oxidation of formic acid at Pt single crystal surfaces. J Phys Chem 97:7613–7618CrossRefGoogle Scholar
  73. 73.
    Kita H, Lei HW (1995) Oxidation of formic acid in acid solution on Pt single-crystal electrodes. J Electroanal Chem 388:167–177CrossRefGoogle Scholar
  74. 74.
    Tripkovic A, Popovic K, Adzic RR (1991) J Chim Phys 88:1635Google Scholar
  75. 75.
    Markovic N, Ross PN (1993) Oscillatory behavior in the electrochemical oxidation of formic acid on Pt(100). J Phys Chem 97:9771–9778CrossRefGoogle Scholar
  76. 76.
    Strasser P, Lübke M, Raspel F, Eiswirth M, Ertl G (1997) Oscillatory instabilities during formic acid oxidation on Pt(100), Pt(110) and Pt(111) under potentiostatic control. I. Experimental. J Chem Phys 107:979–990CrossRefGoogle Scholar
  77. 77.
    Koper MTM (1998) Non-linear phenomena in electrochemical systems. J Chem Soc Faraday Trans 94:1369–1378CrossRefGoogle Scholar
  78. 78.
    Parsons R, VanderNoot T (1988) The oxidation of small organic molecules: a survey of recent fuel cell related research. J Electroanal Chem 257:9–45CrossRefGoogle Scholar
  79. 79.
    Beden B, Leger JM, Lamy C (1992) In: Bockris JO’M, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 22. Plenum, New York, p 97Google Scholar
  80. 80.
    Beden B, Lamy C, Tacconi NRD, Arvia AJ (1991) The electrooxidation of CO: a test reaction in electrocatalysis. Electrochim Acta 35:691–704CrossRefGoogle Scholar
  81. 81.
    Clarke BL (1980) Stability of complex reaction networks. Adv Chem Phys 42:1–213CrossRefGoogle Scholar
  82. 82.
    Eiswirth M, Freund A, Ross J (1991) Mechanistic classification of chemical oscillators and the role of species. In: Prigogine I, Rice SA (eds) Adv Chem Phys, vol 80, pp 127–199.Google Scholar
  83. 83.
    Samjeské G, Osawa M (2005) Current oscillations during formic acid oxidation on a Pt electrode: insight into the mechanism by time-resolved IR spectroscopy. Angew Chem Int Ed 44:5694–5698CrossRefGoogle Scholar
  84. 84.
    Samjeské G, Miki A, Ye S, Yakamata A, Mukouyama Y, Okamoto H, Osawa M (2005) Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: a time-resolved surface-enhanced infrared study. J Phys Chem B 109:23509–23516CrossRefGoogle Scholar
  85. 85.
    Samjeské G, Miki A, Ye S, Osawa M (2006) Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectrometry. J Phys Chem B 110:16559–16566CrossRefGoogle Scholar
  86. 86.
    Mukouyama Y, Kikuchi M, Samjeské G, Osawa M, Okamoto H (2006) Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: a mathematical modeling and simulation. J Phys Chem B 110:11912–11917CrossRefGoogle Scholar
  87. 87.
    Chen YX, Heinen M, Jusys Z, Behm RJ (2006) Bridged-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode? Langmuir 22:10399–10408CrossRefGoogle Scholar
  88. 88.
    Chen YX, Heinen M, Jusys Z, Behm RJ (2006) Kinetics and mechanism of the electrooxidation of formic acid – spectroelectrochemical studies in a flow cell. Angew Chem Int Ed 45:981–985CrossRefGoogle Scholar
  89. 89.
    Chen YX, Miki A, Ye S, Sakai H, Osawa M (2003) Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J Am Chem Soc 125:3680–3681CrossRefGoogle Scholar
  90. 90.
    Nagao R, Epstein IR, Gonzalez ER, Varela H (2008) Temperature (over)compensation in an oscillatory surface reaction. J Phys Chem A 112:4617–4624CrossRefGoogle Scholar
  91. 91.
    Carbonio EA, Nagao R, Gonzalez ER, Varela H (2009) Temperature effects on the oscillatory electro-oxidation of methanol on platinum. Phys Chem Chem Phys 11:665–670CrossRefGoogle Scholar
  92. 92.
    Okamoto H, Tanaka N, Naito M (1995) Analogy between the stimulus-response characteristics of neuronal and electrochemical cells. Chem Phys Lett 237:432–436CrossRefGoogle Scholar
  93. 93.
    Koester J (1985) In: Kandel ER, Schwartz JH (eds) Principles of neural science, 2nd edn. Elsevier, Amsterdam, p 81Google Scholar
  94. 94.
    MacGregor RJ (1987) Neural and brain modeling. Academic, New York, p 225Google Scholar
  95. 95.
    Okamoto H, Tanaka N, Naito M (1997) Chaos in the oxidation of formaldehyde and/or methanol. J Phys Chem A 101:8480–8488CrossRefGoogle Scholar
  96. 96.
    Okamoto H, Tanaka N, Naito M (1998) Chaotic and periodic potential oscillations in formaldehyde oxidation. J Phys Chem A 102:7343–7352CrossRefGoogle Scholar
  97. 97.
    Okamoto H, Tanaka N, Naito M (1998) Intermittencies and related phenomena in the oxidation of formaldehyde at a constant current. J Phys Chem 102:7353–7361CrossRefGoogle Scholar
  98. 98.
    Pomeau Y, Manneville P (1980) Intermittent transition to turbulence in dissipative dynamical systems. Commun Math Phys 74:189–197CrossRefGoogle Scholar
  99. 99.
    Bergé P, Pomeau Y, Vidal C (1984) Order within chaos – towards a deterministic approach to turbulence. Wiley, New YorkGoogle Scholar
  100. 100.
    Strogatz SH (1994) Nonlinear dynamics and chaos. Perseus, MassachussetsGoogle Scholar
  101. 101.
    Hunger HF (1968) The mechanism of oscillatory behavior during the anodic oxidation of formaldehyde. J Electrochem Soc 115:492–497CrossRefGoogle Scholar
  102. 102.
    Bełtowska-Brzezińska M, Heitbaum J, Vielstich W (1985) The influence of UPD-lead on the adsorption of formaldehyde, formic acid and methanol on Pt in acid solution. Electrochim Acta 30:1465–1471CrossRefGoogle Scholar
  103. 103.
    Koper MTM, Hackar M, Beden B (1996) Investigation of the oscillatory electro-oxidation of formaldehyde on Pt and Rh electrodes by cyclic voltammetry, impedance spectroscopy and the electrochemical quartz microbalance. J Chem Soc Faraday Trans 92:3975–3982CrossRefGoogle Scholar
  104. 104.
    Koper MTM (1996) Oscillations and complex dynamical bifurcations in electrochemical systems. In: Prigogine I, Rice SA (eds) Adv Chem Phys XCII: 161–298Google Scholar
  105. 105.
    Olivi P, Bulhões LOS, Beden B, Hahn F, Léger JM, Lamy C (1992) Oxidation of formaldehyde in an alkaline medium on a polycrystalline platinum electrode. J Electroanal Chem 330:583–594CrossRefGoogle Scholar
  106. 106.
    Olivi P, Bulhões LOS, Léger JM, Hahn F, Beden B, Lamy C (1994) New results in the electro-oxidation of formaldehyde on a platinum electrode in an acid medium. J Electroanal Chem 370:241–249CrossRefGoogle Scholar
  107. 107.
    Karantonis A, Koutsaftis D, Kouloumbi N (2006) Bistability, oscillations and bifurcations of the electrocatalytic oxidation of HCHO on Pt. Chem Phys Lett 422:78–82CrossRefGoogle Scholar
  108. 108.
    Mishina E, Karantonis A, Yu QK, Nakabayashi S (2002) Optical second harmonic generation during the electrocatalytic oxidation of formaldehyde on Pt(111): potentiostatic regime versus galvanostatic potential oscillations. J Phys Chem B 106:10199–10204CrossRefGoogle Scholar
  109. 109.
    Akemann W, Friedrich KA, Stimming U (2000) Potential-dependence of CO adlayer structures on Pt(111) electrodes in acid solution: evidence for a site-selctive charge transfer. J Chem Phys 113:6864–6874CrossRefGoogle Scholar
  110. 110.
    Samjeské G, Miki A, Osawa M (2007) Electrocatalytic oxidation of formaldehyde on platinum under galvanostatic and potential sweep conditions studied by time-resolved surface-enhanced infrared spectroscopy. J Phys Chem C 111:15074–15083CrossRefGoogle Scholar
  111. 111.
    Seidel YE, Jusys Z, Lindström RW, Stenfeldt M, Kasemo B, Krischer K (2010) Oscillatory behavior in galvanostatic formaldehyde oxidation on nanostructured Pt/glassy carbon model electrodes. ChemPhysChem 11:1405–1415CrossRefGoogle Scholar
  112. 112.
    Pavela TO (1958) Suom Kemistil 31:138Google Scholar
  113. 113.
    Buck RP, Griffith LR (1962) Voltammetric and chronopotentiometric study of the anodic oxidation of methanol, formaldehyde, and formic acid. J Electrochem Soc 109:1005–1013CrossRefGoogle Scholar
  114. 114.
    Krausa M, Vielstich W (1995) Potential oscillations during methanol oxidation at Pt electrodes. Part 1: experimental conditions. J Electroanal Chem 399:7–12CrossRefGoogle Scholar
  115. 115.
    Lee J, Eickes C, Eiswirth M, Ertl G (2002) Electrochemical oscillations in the methanol oxidation on Pt. Electrochim Acta 47:2297–2301CrossRefGoogle Scholar
  116. 116.
    Bagotzky VS, Vassiliev YB, Khazova OA (1977) Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals. J Electroanal Chem 81:229–238CrossRefGoogle Scholar
  117. 117.
    Hachkar M, Beden B, Lamy C (1990) Oscillating electrocatalytic systems: part I. Survey of systems involving the oxidation of organics and detailed electrochemical investigation of formaldehyde oxidation on rhodium electrodes. J Electroanal Chem 287:81–98CrossRefGoogle Scholar
  118. 118.
    Vielstich W, Paganin VA, Lima FHB, Ticianelli EA (2001) Nonelectrochemical pathway of methanol oxidation at a platinum-catalyzed oxygen gas diffusion electrode. J Electrochem Soc 148:A502–A505CrossRefGoogle Scholar
  119. 119.
    Martins AL, Batista BC, Sitta E, Varela H (2008) Oscillatory instabilities during the electrocatalytic oxidation of methanol on platinum. J Braz Chem Soc 19:679–687. Google Scholar
  120. 120.
    Batista EA, Malpass GRP, Montheo AJ, Iwasita T (2003) New insight into the pathways of methanol oxidation. Electrochem Commun 5:843–846CrossRefGoogle Scholar
  121. 121.
    Batista EA, Malpass GRP, Montheo AJ, Iwasita T (2004) New mechanistic aspects of methanol oxidation. J Electroanal Chem 571:273–282CrossRefGoogle Scholar
  122. 122.
    Novak M, Cs V (1980) Some observations on oscillatory phenomena in anodic oxidation. Acta Chim Acad Sci Hung 105:47–56Google Scholar
  123. 123.
    Rao KV, Roy CB (1977) J Indian Chem Soc 54:1180Google Scholar
  124. 124.
    Chen S, Schell M (1999) Bistability and excitability in the electrochemical oxidation of ethanol. Electrochim Acta 44:4773–4780CrossRefGoogle Scholar
  125. 125.
    Inzelt G, Kertész V, Láng G (1993) Simultaneous oscillations of the surface mass and potential in the course of the galvanostatic oxidation of 2-propanol. J Phys Chem 97:6104–6106CrossRefGoogle Scholar
  126. 126.
    Chen S, Schell M (2000) Excitability and multistability in the electrochemical oxidation of primary alcohols. Electrochim Acta 45:3069–3080CrossRefGoogle Scholar
  127. 127.
    Schell M (1998) Mechanistic and fuel-cell implications of a tristable response in the electrochemical oxidation of methanol. J Electroanal Chem 457:221–228CrossRefGoogle Scholar
  128. 128.
    Chen S, Schell M (1999) A comparison of multistability in the electrocatalyzed oxidations of methanol and ethanol in acid and alkaline solutions. J Electroanal Chem 478:108–117CrossRefGoogle Scholar
  129. 129.
    Orbán M, Dateo C, De Kepper P, Epstein IR (1982) Systematic design of chemical oscillators. 11. Chlorite oscillators: new experimental examples, tristability, and preliminary classification. J Am Chem Soc 104:5911–5918CrossRefGoogle Scholar
  130. 130.
    Nagy A, Treindl L (1989) Design of a permanganate chemical oscillator with hydrogen peroxide. J Phys Chem 93:2807–2810CrossRefGoogle Scholar
  131. 131.
    Chie K, Okazaki N, Tanimoto Y, Hanazaki I (2001) Tristability in the bromate-sulfite-hydrogencarbonate pH oscillator. Chem Phys Lett 334:55–60CrossRefGoogle Scholar
  132. 132.
    Leung LWH, Weaver MJ (1988) Real-time FTIR spectroscopy as a quantitative kinetic probe of competing electrooxidation pathways of small organic molecules. J Phys Chem 92:4019–4022CrossRefGoogle Scholar
  133. 133.
    Krischer K, Varela H (2003) Oscillations and other dynamic instabilities. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, chapter 46, vol 2, Part 6, Wiley, Chichester, pp 679–701Google Scholar
  134. 134.
    Schell M, Xu Y, Amini A (1994) An electrochemical mechanism for the voltammetric oxidation of methanol and its relationship with period-doubling bifurcations. J Phys Chem 98:12768–12775CrossRefGoogle Scholar
  135. 135.
    Xu Y, Amini A, Schell M (1995) Mechanistic explanation for a subharmonic bifurcation and variations in behavior in the voltammteric oxidations of ethanol, 1-propanol and 1-butanol. J Electroanal Chem 398:95–104CrossRefGoogle Scholar
  136. 136.
    Habib MA, Bockris JO’M (1986) Potential-dependent water orientation: an in situ spectroscopic study. Langmuir 2:388–392CrossRefGoogle Scholar
  137. 137.
    Bockris J, O’M JKT (1992) In-situ studies of adsorption of organic compounds on platinum electrodes. J Electroanal Chem 330:541–581CrossRefGoogle Scholar
  138. 138.
    Bockris JO’M, Reddy AKN (1973) Modern electrochemistry, vol 2. Plenum, New York, pp 779–790Google Scholar
  139. 139.
    Huang W, Li Z, Peng Y, Niu Z (2004) Transition of oscillatory mechanism for methanol electro-oxidation on nano-structured nickel hydroxide film (NNHF) electrode. Chem Commun 1380–1381Google Scholar
  140. 140.
    Huang W, Li ZL, Peng YD, Chen S, Zheng JF, Niu ZJ (2005) Oscillatory electrocatalytic oxidation of methanol on an Ni(OH)2 film electrode. J Solid State Electrochem 9:284–289CrossRefGoogle Scholar
  141. 141.
    Helms H, Schlömer E, Jansen W (1998) Potential- und Stromoszillationen an Pyrit-Elektroden in sulfidischer Lösung. Monatsh Chem 129:1275–1284Google Scholar
  142. 142.
    Xu L, Gao Q, Feng J, Wang J (2004) Oscillations and period-doubling bifurcations in the electrochemical oxidation of thiourea. Chem Phys Lett 397:265–270CrossRefGoogle Scholar
  143. 143.
    Liu L, Feng J, Wu G, Lu X, Gao Q (2009) Dynamical complexity in electrochemical oxidations of thiocyanate. Chin J Chem 27:649–654CrossRefGoogle Scholar
  144. 144.
    Küster FW (1905) Beiträge zur Kenntnis der Polysulfide. III. Die periodischen Vorgänge bei Elektrolyse der Polysulfide. Z anorg Chem 46:113–143CrossRefGoogle Scholar
  145. 145.
    Bohnholtzer W, Heinrich F (1933) Zur Kenntnis der Elektrolyse von Natriumsulfid. Z Elektrochem 39:939–947Google Scholar
  146. 146.
    Gerischer H (1950) Reaktionen und periodische Vorgänge an einer Platinanode in Alkalisulfidlösungen. Z Elektrochem 54:540–546Google Scholar
  147. 147.
    Helms H, Schlömer E, Jansen W (1998) Oszillationsphänomene bei der Elektrolyse von Alkalisulfidlösungen an Platinenelektroden. Monatsh Chem 129:617–623Google Scholar
  148. 148.
    Chen A, Miller B (2004) Potential oscillations during the electrocatalytic oxidation of sulfide on a microstructured Ti/Ta2O5-IrO2 electrode. J Phys Chem B 108:2245–2251CrossRefGoogle Scholar
  149. 149.
    Miller B, Chen A (2005) Effect of concentration and temperature on electrochemical oscillations during sulfide oxidation on Ti/Ta2O5-IrO2 electrodes. Electrochim Acta 50:2203–2212CrossRefGoogle Scholar
  150. 150.
    Li Z, Cai J, Zhou S (1997) Current oscillations in the reduction or oxidation of some anions involving convection mass transfer. J Electroanal Chem 436:195–201CrossRefGoogle Scholar
  151. 151.
    Strasser P, Lübke M, Eickes C, Eiswirth M (1999) Modeling galvanostatic potential oscillations in the electrocatalytic iodate reduction system. J Electroanal Chem 462:19–33CrossRefGoogle Scholar
  152. 152.
    Miller B, Chen A (2006) Oscillatory instabilities during the electrochemical oxidation of sulfide on a Pt electrode. J Electroanal Chem 588:314–323CrossRefGoogle Scholar
  153. 153.
    Feng J, Gao Q, Xu L, Wang J (2005) Nonlinear phenomena in the electrochemical oxidation of sulfide. Electrochem Commun 7:1471–1476CrossRefGoogle Scholar
  154. 154.
    Wang S, Yang J, Hu X, Feng J, Gao Q, 218th ECS Meeting, Abstract #2230, ©2010, The Electrochemical SocietyGoogle Scholar
  155. 155.
    Bard AJ (1963) Chronopotentiometric oxidation of hydrazine at a platinum electrode. Anal Chem 35:1602–1607CrossRefGoogle Scholar
  156. 156.
    Schell M, Xu Y, Zdraveski Z (1996) Mechanism for the electrocatalyzed oxidation of glycerol deduced from an analysis of chemical instabilities. J Phys Chem 100:18962–18969CrossRefGoogle Scholar
  157. 157.
    Hudson JL, Tsotsis TT (1994) Electrochemical reaction dynamics: a review. Chem Eng Sci 49:1493–1572CrossRefGoogle Scholar
  158. 158.
    Tributsch H, Sakata T, Kawai T (1981) Photoinduced layer phenomenon caused by iodine formation in MoSe2: electrolyte (iodide) junctions. Electrochim Acta 26:21–31CrossRefGoogle Scholar
  159. 159.
    Vainas B (1985) A local corrosive breakdown of surface compensated CdS electrodes. J Electroanal Chem 184:215–218CrossRefGoogle Scholar
  160. 160.
    Hammer C, Walther B, Karabulut H, Lohrengel MM (2011) Oscillating oxygen evolution at Ta anodes. J Solid State Electrochem 15:1885–1891CrossRefGoogle Scholar
  161. 161.
    Beck F, Jiang J, Krohn H (1995) Potential oscillations during galvanostatic overoxidation of graphite in aqueous sulphuric acids. J Electroanal Chem 389:161–165CrossRefGoogle Scholar
  162. 162.
    Harrach A, Douglade J, Métrot (1992) Oscillatory behavior of HOPG during its overoxidation in H2SO4-H2O media. Mater Sci Forum 91:689Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marek Orlik
    • 1
  1. 1.Faculty of ChemistryUniversity of WarsawWarsawPoland

Personalised recommendations