Advertisement

Improving Watermark Resistance against Removal Attacks Using Orthogonal Wavelet Adaptation

  • Jan Stolarek
  • Piotr Lipiński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7147)

Abstract

This paper proposes a new approach for enhancing the robustness of wavelet-based image watermarking algorithms. The method adjusts wavelet used in the process of image watermarking in order to maximize resistance against image processing operations. Effectiveness of the approach is demonstrated using blind multiplicative watermarking algorithm, but it can easily be generalized to all wavelet-based watermarking algorithms. Presented results demonstrate that wavelets generated using proposed approach outperform other wavelet bases commonly used in image watermarking in terms of robustness to removal attacks.

Keywords

Discrete Wavelet Transform Cover Image Image Watermark Digital Watermark Watermark Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform. IEEE Transactions on Image Processing 1, 205–220 (1992)CrossRefGoogle Scholar
  2. 2.
    Cheng, G., Yang, J.: A watermarking scheme based on two-dimensional wavelet filter parametrization. In: Fifth International Conference on Information Assurance and Security, IAS 2009, pp. 301–304 (2009)Google Scholar
  3. 3.
    Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics 45(5), 485–560 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Craver, S., Memon, N., Yeo, B.-L., Yeung, M.M.: Resolving rightful ownerships with invisible watermarking techniques: Limitations, attacks, and implications. IEEE Journal on Selected Areas in Communications 16(4), 573–586 (1998)CrossRefGoogle Scholar
  5. 5.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM (1992)Google Scholar
  6. 6.
    Davis, G.: Wavelet image compression construction kit (1997), http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html
  7. 7.
    Dietze, M., Jassim, S.: Filters ranking for DWT-domain robust digital watermarking. EURASIP Journal on Applied Signal Processing 14, 2093–2101 (2004)CrossRefGoogle Scholar
  8. 8.
    Huang, Z.Q., Jiang, Z.: Watermarking still images using parametrized wavelet systems. In: Image and Vision Computing. Institute of Information Sciences and Technology, Massey University (2003)Google Scholar
  9. 9.
    Le Gall, D., Tabatabai, A.: Sub-band coding of digital images using symmetric short kernel filters and arithmetic coding techniques. In: International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1988 (1988)Google Scholar
  10. 10.
    Licks, V., Jordan, R.: Geometric attacks on image watermarking systems. IEEE Multimedia 12(3), 68–78 (2005)CrossRefGoogle Scholar
  11. 11.
    Lipiński, P., Stolarek, J.: Digital watermarking enhancement using wavelet filter parametrization. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) Adaptive and Natural Computing Algorithms (10th ICANNGA, 2011), vol. 1, pp. 330–339 (2011)Google Scholar
  12. 12.
    Miyazaki, A.: A study on the best wavelet filter bank problem in the wavelet-based image watermarking. In: 18th European Conference on Circuit Theory and Design, ECCTD 2007, pp. 184–187 (2007)Google Scholar
  13. 13.
    Rieder, P., Götze, J., Nossek, J.S., Burrus, C.S.: Parameterization of orthogonal wavelet transforms and their implementation. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 45(2), 217–226 (1998)CrossRefGoogle Scholar
  14. 14.
    Vaidyanathan, P.P., Hoang, P.-Q.: Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks. IEEE Transactions on Acoustics, Speech and Signal Processing 36(1), 81–94 (1988)CrossRefGoogle Scholar
  15. 15.
    Villasenor, J.D., Belzer, B., Liao, J.: Wavelet filter evaluation for image compression. IEEE Transactions on Image Processing 4(8), 1053–1060 (1995)CrossRefGoogle Scholar
  16. 16.
    Voloshynovskiy, S., Pereira, S., Pun, T., Eggers, J.J., Su, J.K.: Attacks on digital watermarks: Classification, estimation based attacks and benchmarks. IEEE Communications Magazine 39(8), 118–126 (2001)CrossRefGoogle Scholar
  17. 17.
    Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Processing Letters 9(3), 81–84 (2002)CrossRefGoogle Scholar
  18. 18.
    Yatsymirskyy, M.: Lattice structures for synthesis and implementation of wavelet transforms. Journal of Applied Computer Science 17(1), 133–141 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jan Stolarek
    • 1
  • Piotr Lipiński
    • 1
  1. 1.Institute of Information TechnologyTechnical University of LodzPoland

Personalised recommendations