An Algorithm for Probabilistic Alternating Simulation

  • Chenyi Zhang
  • Jun Pang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7147)


In probabilistic game structures, probabilistic alternating simulation (PA-simulation) relations preserve formulas defined in probabilistic alternating-time temporal logic with respect to the behaviour of a subset of players. We propose a partition based algorithm for computing the largest PA-simulation. It is to our knowledge the first such algorithm that works in polynomial time. Our solution extends the generalised coarsest partition problem (GCPP) to a game-based setting with mixed strategies. The algorithm has higher complexities than those in the literature for non-probabilistic simulation and probabilistic simulation without mixed actions, but slightly improves the existing result for computing probabilistic simulation with respect to mixed actions.


Linear Programming Problem Mixed Strategy Stochastic Game Mixed Action Simulation Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of ACM 49(5), 672–713 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating Refinement Relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. Journal of Computer and System Sciences 60(1), 187–231 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bustan, D., Grumberg, O.: Simulation based minimization. ACM Transactions on Computational Logic 4(2), 181–206 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cattani, S., Segala, R.: Decision Algorithms for Probabilistic Bisimulation. In: Brim, L., Jančar, P., Křetínský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–386. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of quantitative concurrent parity games. In: Proc. SODA, pp. 678–687. ACM (2006)Google Scholar
  7. 7.
    Chatterjee, K., de Alfaro, L., Majumdar, R., Raman, V.: Algorithms for game metrics (full version). Logical Methods in Computer Science 6(3:13), 1–27 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Clarke, E.M., Emerson, E.A.: Synthesis of Synchronization Skeletons for Branching-Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  9. 9.
    de Alfaro, L.: Quantitative Verification and Control Via the Mu-Calculus. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 103–127. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. In: Proc. FOCS, pp. 564–575. IEEE CS (1998)Google Scholar
  11. 11.
    de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. Journal of Computer and System Sciences 68(2), 374–397 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game refinement relations and metrics. Logic Methods in Computer Science 4(3:7), 1–28 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: Coarsest partition problems. Journal of Automatic Reasoning 31(1), 73–103 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grumberg, O., Long, D.: Model checking and modular verification. ACM Transactions on Programming Languages and Systems 16(3), 843–871 (1994)CrossRefGoogle Scholar
  15. 15.
    Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: Proc. FOCS, pp. 453–462. IEEE CS (1995)Google Scholar
  16. 16.
    Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: Proc. LICS, pp. 266–277. IEEE CS (1991)Google Scholar
  17. 17.
    Karmakar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In: Proc. LICS, pp. 171–180. IEEE CS (2007)Google Scholar
  19. 19.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Massachusetts Institute of Technology (1995)Google Scholar
  20. 20.
    Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2(2), 250–273 (1995)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Shapley, L.S.: Stochastic games. Proc. National Academy of Science 39, 1095–1100 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tan, L., Cleaveland, R.: Simulation Revisited. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 480–495. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    van Glabbeek, R.J., Ploeger, B.: Correcting a Space-Efficient Simulation Algorithm. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 517–529. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press (1947)Google Scholar
  25. 25.
    Zhang, C., Pang, J.: On Probabilistic Alternating Simulations. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 71–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Zhang, L.: A Space-Efficient Probabilistic Simulation Algorithm. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 248–263. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: Efficient decision algorithms for probabilistic simulations. Logical Methods in Computer Science 4(4:6), 1–43 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chenyi Zhang
    • 1
    • 2
  • Jun Pang
    • 3
  1. 1.University of QueenslandBrisbaneAustralia
  2. 2.University of New South WalesSydneyAustralia
  3. 3.University of LuxembourgLuxembourg

Personalised recommendations