Abstract

We attempt to put the title problem and the Church-Turing thesis into a proper perspective and to clarify some common misconceptions related to Turing’s analysis of computation. We examine two approaches to the title problem, one well-known among philosophers and another among logicians.

Keywords

Monotone Operator Turing Machine Sequential Algorithm Recursive Equation Abstract State Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Vianu, V.: Datalog extensions for database queries and updates. J. of Computer and System Sciences 43, 62–124 (1991)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Biedl, T., Buss, J.F., Demaine, E.D., Demaine, M.L., Hajiaghayi, M., Vinař, T.: Palindrome recognition using a multidemensional tape. Theoretical Computer Science 302, 475–480 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM Transactions on Computational Logic 4(4), 578–651 (2003); Correction and extension, same journal 9(3) article 19 (2008)Google Scholar
  4. 4.
    Blass, A., Gurevich, Y.: Algorithms vs. machines. Bull. European Association for Theoretical Computer Science 77, 96–118 (2002)MathSciNetMATHGoogle Scholar
  5. 5.
    Blass, A., Gurevich, Y.: Algorithms: A quest for absolute definitions. In: Current Trends in Theoretical Computer Science, pp. 195–225. World Scientific (2004); also in Olszewski, A., et al. (eds): Church’s Thesis after 70 Years, pp. 24–57. Ontos Verlag (2006)Google Scholar
  6. 6.
    Blass, A., Gurevich, Y.: Ordinary interactive small-step algorithms. ACM Trans. Computational Logic (Part I), 7(2), 363–419 (2006); plus 8(3), articles 15 and 16 (Parts II, III) (2007)Google Scholar
  7. 7.
    Blass, A., Gurevich, Y., Rosenzweig, D., Rossman, B.: Interactive small-step algorithms. Logical Methods in Computer Science 3(4), papers 3 and 4 (Part I and Part II) (2007)Google Scholar
  8. 8.
    Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof of Church’s thesis. Bull. of Symbolic Logic 14(3), 299–350 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., et al. (eds.) The Kleene Symposium, pp. 123–148. North-Holland (1980)Google Scholar
  10. 10.
    Cooper, S., Löwe, B., Sorbi, A. (eds.): New Computational Paradigms: Changing Conceptions of what is Computable. Springer, Heidelberg (2008)MATHGoogle Scholar
  11. 11.
    Grädel, E., Nowack, A.: Quantum Computing and Abstract State Machines. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589, pp. 309–323. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Gurevich, Y.: Sequential Abstract State Machines Capture Sequential Algorithms. ACM Transactions on Computational Logic 1(1), 77–111 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gurevich, Y., Shelah, S.: Fixed-point extensions of first-order logic. Annals of Pure and Applied Logic 32, 265–280 (1986)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kolmogorov, A.N.: On the concept of algorithm. Uspekhi Mat. Nauk 8(4), 175–176 (1953) (in Russian); English translation in [25]Google Scholar
  15. 15.
    McCarthy, J.: A basis for a mathematical theory of computation. In: Brafford, P., Herschberg, D. (eds.) Computer Programming and Formal Systems, pp. 33–70. North-Holland (1963)Google Scholar
  16. 16.
    Moschovakis, Y.N.: Abstract recursion as a foundation of the theory of algorithms. In: Computation and Proof Theory. Lecture Notes in Mathematics, vol. 1104, pp. 289–364. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  17. 17.
    Moschovakis, Y.N.: What is an algorithm? In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited – 2001 and Beyond, pp. 919–936. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Moschovakis, Y.N.: Algorithms and implementations. Tarski Lecture 1 (2008), http://www.math.ucla.edu/~ynm/lectures/tlect1.pdf
  19. 19.
    Moschovakis, Y.N., Paschalis, V.: Elementary algorithms and their implementations. In: [10], pp. 87–118Google Scholar
  20. 20.
    Shagrir, O.: Effective computation by humans and machines. Minds and Machines 12, 221–240 (2002)CrossRefMATHGoogle Scholar
  21. 21.
    Sieg, W.: Calculations by man & machine: Mathematical presentation. In: Proceedings of the Cracow International Congress of Logic, Methodology and Philosophy of Science, pp. 245–260. Kluwer (2002)Google Scholar
  22. 22.
    Sieg, W.: Church without dogma – Axioms for computability. In: [10], pp. 139–152Google Scholar
  23. 23.
    Sieg, W.: On Computability. In: Irvine, A. (ed.) Handbook of the Philosophy of Mathematics, pp. 535–630. Elsevier (2009)Google Scholar
  24. 24.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of London Mathematical Society, Series 2 42, 230–265 (1936-1937); Correction, same journal 43, 544–546Google Scholar
  25. 25.
    Uspensky, V.A., Semenov, A.L.: Algorithms: Main Ideas and Applications. Kluwer (1993)Google Scholar
  26. 26.
    Valarcher, P.: Habilitation à Diriger des Recherches, Université Paris Est Créteil, LACL (EA 4219), Département d’Informatique, IUT Fontainebleau, France (2010), http://www.paincourt.net/perso/Publi/hdr.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yuri Gurevich
    • 1
  1. 1.Microsoft ResearchUSA

Personalised recommendations