Advertisement

Unique-Maximum and Conflict-Free Coloring for Hypergraphs and Tree Graphs

  • Panagiotis Cheilaris
  • Balázs Keszegh
  • Dömötör Pálvölgyi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7147)

Abstract

We investigate the relationship between two kinds of vertex colorings of hypergraphs: unique-maximum colorings and conflict-free colorings. In a unique-maximum coloring, the colors are ordered, and in every hyperedge of the hypergraph the maximum color in the hyperedge occurs in only one vertex of the hyperedge. In a conflict-free coloring, in every hyperedge of the hypergraph there exists a color in the hyperedge that occurs in only one vertex of the hyperedge. We define corresponding unique-maximum and conflict-free chromatic numbers and investigate their relationship in arbitrary hypergraphs. Then, we concentrate on hypergraphs that are induced by simple paths in tree graphs.

Keywords

Chromatic Number Parity Vector Tree Graph Central Edge Vertex Coloring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Noy, A., Cheilaris, P., Smorodinsky, S.: Deterministic conflict-free coloring for intervals: from offline to online. ACM Transactions on Algorithms 4(4), 44.1–44.18 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H., Tuza, Z.: Rankings of graphs. SIAM Journal on Discrete Mathematics 11(1), 168–181 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms 18(2), 238–255 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheilaris, P.: Conflict-free coloring. Ph.D. thesis, City University of New York (2009)Google Scholar
  5. 5.
    Cheilaris, P., Tóth, G.: Graph unique-maximum and conflict-free colorings. Journal of Discrete Algorithms 9, 241–251 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, K., Fiat, A., Kaplan, H., Levy, M., Matoušek, J., Mossel, E., Pach, J., Sharir, M., Smorodinsky, S., Wagner, U., Welzl, E.: Online conflict-free coloring for intervals. SIAM Journal on Computing 36(5), 1342–1359 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Elbassioni, K.M., Mustafa, N.H.: Conflict-Free Colorings of Rectangles Ranges. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 254–263. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM Journal on Computing 33, 94–136 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Har-Peled, S., Smorodinsky, S.: Conflict-free coloring of points and simple regions in the plane. Discrete and Computational Geometry 34, 47–70 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Iyer, A.V., Ratliff, H.R., Vijayan, G.: Optimal node ranking of trees. Information Processing Letters 28, 225–229 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Katchalski, M., McCuaig, W., Seager, S.: Ordered colourings. Discrete Mathematics 142, 141–154 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 270–281 (1980)Google Scholar
  13. 13.
    Liu, J.W.: The role of elimination trees in sparse factorization. SIAM Journal on Matrix Analysis and Applications 11(1), 134–172 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Llewellyn, D.C., Tovey, C.A., Trick, M.A.: Local optimization on graphs. Discrete Applied Mathematics 23(2), 157–178 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism bounds. European Journal of Combinatorics 27, 1022–1041 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pach, J., Tardos, G.: Conflict-free colourings of graphs and hypergraphs. Combinatorics, Probability and Computing 18, 819–834 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pach, J., Tóth, G.: Conflict free colorings. In: Discrete and Computational Geometry. The Goodman-Pollack Festschrift, pp. 665–671. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Pothen, A.: The complexity of optimal elimination trees. Tech. Rep. CS-88-16, Department of Computer Science, Pennsylvania State University (1988)Google Scholar
  19. 19.
    Smorodinsky, S.: Combinatorial Problems in Computational Geometry. Ph.D. thesis, School of Computer Science, Tel-Aviv University (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Panagiotis Cheilaris
    • 1
  • Balázs Keszegh
    • 2
  • Dömötör Pálvölgyi
    • 3
  1. 1.Center for Advanced Studies in MathematicsBen-Gurion UniversityBe’er ShevaIsrael
  2. 2.Alfréd Rényi Institute of MathematicsBudapestHungary
  3. 3.Eötvös UniversityBudapestHungary

Personalised recommendations