dP Automata versus Right-Linear Simple Matrix Grammars

  • Gheorghe Păun
  • Mario J. Pérez-Jiménez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7160)

Abstract

We consider dP automata with the input string distributed in an arbitrary (hence not necessary balanced) way, and we investigate their language accepting power, both in the case when a bound there is on the number of objects present inside the system and in the general case. The relation with right-linear simple matrix grammars is useful in this respect. Some research topics and open problems are also formulated.

Keywords

Regular Language Input String Communication Rule Membrane Computing Formal Language Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Csuhaj-Varju, E., Vaszil, G.: A connection between finite dP automata and multi-head finite automata. In: Proc. Twelfth Intern. Conf. of Membrane Computing, CMC 12, Fontainebleau, France, pp. 109–126 (August 2011)Google Scholar
  2. 2.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Berlin (1989)CrossRefMATHGoogle Scholar
  3. 3.
    Freund, R., Kogler, M., Păun, G., Pérez-Jiménez, M.J.: On the power of P and dP automata. Annals of Bucharest University. Mathematics-Informatics Series 63, 5–22 (2009)MathSciNetMATHGoogle Scholar
  4. 4.
    Hromkovic, J.: Communication Complexity and Parallel Computing: The Application of Communication Complexity in Parallel Computing. Springer, Berlin (1997)CrossRefMATHGoogle Scholar
  5. 5.
    Ibarra, O.: Simple matrix grammars. Information and Control 17, 359–394 (1970)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  7. 7.
    Păun, G., Pérez-Jiménez, M.J.: Solving problems in a distributed way in membrane computing: dP systems. Int. J. of Computers, Communication and Control 5(2), 238–252 (2010)CrossRefGoogle Scholar
  8. 8.
    Păun, G., Pérez-Jiménez, M.J.: P and dP Automata: A Survey. In: Calude, C.S., Rozenberg, G., Salomaa, A. (eds.) Maurer Festschrift. LNCS, vol. 6570, pp. 102–115. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Păun, G., Pérez-Jiménez, M.J.: An infinite hierarchy of languages defined by dP Systems. Theoretical Computer Sci. (in press)Google Scholar
  10. 10.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  11. 11.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, Berlin (1998)Google Scholar
  12. 12.
    The P Systems Website, http://ppage.psystems.eu

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gheorghe Păun
    • 1
    • 2
  • Mario J. Pérez-Jiménez
    • 2
  1. 1.Institute of Mathematics of the Romanian AcademyBucureştiRomania
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of SevillaSevillaSpain

Personalised recommendations