Haunted Quantum Contextuality versus Value Indefiniteness

  • Karl Svozil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7160)


Physical entities are ultimately (re)constructed from elementary yes/no events, in particular clicks in detectors or measurement devices recording quanta. Recently, the interpretation of certain such clicks has given rise to unfounded claims which are neither necessary nor sufficient, although they are presented in that way. In particular, clicks can neither inductively support nor “(dis)prove” the Kochen-Specker theorem, which is a formal result that has a deductive proof by contradiction. More importantly, the alleged empirical evidence of quantum contextuality, which is “inferred” from violations of bounds of classical probabilities by quantum correlations, is based on highly nontrivial assumptions, in particular on physical omniscience.


Quantum Correlation Physical Reality Single Quantum Physical Review Letter Quantum Observable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amselem, E., Rådmark, M., Bourennane, M., Cabello, A.: State-independent quantum contextuality with single photons. Physical Review Letters 103(16), 160405 (2009),, doi:10.1103/PhysRevLett.103.160405CrossRefGoogle Scholar
  2. 2.
    Bartosik, H., Klepp, J., Schmitzer, C., Sponar, S., Cabello, A., Rauch, H., Hasegawa, Y.: Experimental test of quantum contextuality in neutron interferometry. Physical Review Letters 103(4), 040403 (2009),, doi:10.1103/PhysRevLett.103.040403CrossRefGoogle Scholar
  3. 3.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics 38, 447–452 (1966),, doi:10.1103/RevModPhys.38.447MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bohr, N.: Discussion with Einstein on epistemological problems in atomic physics. In: Schilpp, P.A. (ed.) Albert Einstein: Philosopher-Scientist, pp. 200–241. The Library of Living Philosophers, Evanston (1949),, doi:10.1016/S1876-05030870379-7Google Scholar
  5. 5.
    Cabello, A.: Experimentally testable state-independent quantum contextuality. Physical Review Letters 101(21), 210401 (2008),, doi:10.1103/PhysRevLett.101.210401CrossRefGoogle Scholar
  6. 6.
    Cabello, A.: Proposal for revealing quantum nonlocality via local contextuality. Physical Review Letters 104, 220401 (2010),, doi:10.1103/PhysRevLett.104.220401MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cabello, A.: Quantum physics: Correlations without parts. Nature 474(7352), 456–458 (2011),, doi:10.1038/474456aCrossRefGoogle Scholar
  8. 8.
    Cabello, A., Cunha, M.T.: Proposal of a two-qutrit contextuality test free of the finite precision and compatibility loopholes. Physical Review Letters 106, 190401 (2011),, doi:10.1103/PhysRevLett.106.190401CrossRefGoogle Scholar
  9. 9.
    Calude, C.S., Svozil, K.: Quantum randomness and value indefiniteness. Advanced Science Letters 1(2), 165–168 (2008),, doi:10.1166/asl.2008.016CrossRefGoogle Scholar
  10. 10.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Physical Review 47(10), 777–780 (1935),, doi:10.1103/PhysRev.47.777CrossRefzbMATHGoogle Scholar
  11. 11.
    Halmos, P.R.: Finite-dimensional Vector Spaces. Springer, New York (1974)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hasegawa, Y., Loidl, R., Badurek, G., Baron, M., Rauch, H.: Quantum contextuality in a single-neutron optical experiment. Physical Review Letters 97(23), 230401 (2006),, doi:10.1103/PhysRevLett.97.230401CrossRefzbMATHGoogle Scholar
  13. 13.
    Kirchmair, G., Zähringer, F., Gerritsma, R., Kleinmann, M., Gühne, O., Cabello, A., Blatt, R., Roos, C.F.: State-independent experimental test of quantum contextuality. Nature 460, 494–497 (2009),, doi:10.1038/nature08172CrossRefGoogle Scholar
  14. 14.
    Lapkiewicz, R., Li, P., Schaeff, C., Langford, N.K., Ramelow, S., Wieśniak, M., Zeilinger, A.: Experimental non-classicality of an indivisible quantum system. Nature 474, 490–493 (2011),, doi:10.1038/nature10119CrossRefGoogle Scholar
  15. 15.
    Meyer, D.A.: Finite precision measurement nullifies the Kochen-Specker theorem. Physical Review Letters 83(19), 3751–3754 (1999),, doi:10.1103/PhysRevLett.83.3751MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Peres, A.: Unperformed experiments have no results. American Journal of Physics 46, 745–747 (1978),, doi:10.1119/1.11393CrossRefGoogle Scholar
  17. 17.
    Pitowsky, I.: Resolution of the Einstein-Podolsky-Rosen and Bell paradoxes. Physical Review Letters 48, 1299–1302 (1982),, doi:10.1103/PhysRevLett.48.1299MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pitowsky, I.: George Boole’s ‘conditions of possible experience’ and the quantum puzzle. The British Journal for the Philosophy of Science 45, 95–125 (1994),, doi:10.1093/bjps/45.1.95MathSciNetCrossRefGoogle Scholar
  19. 19.
    Schrödinger, E.: The Interpretation of Quantum Mechanics. Dublin Seminars (1949-1955) and Other Unpublished Essays. Ox Bow Press, Woodbridge, Connecticut (1995)Google Scholar
  20. 20.
    Stace, W.T.: The refutation of realism. In: Feigl, H., Sellars, W. (eds.) Readings in Philosophical Analysis, pp. 364–372. Appleton-Century-Crofts, New York (1949); previously published in Mind 53, 349–353 (1934)Google Scholar
  21. 21.
    Svozil, K.: Quantum information via state partitions and the context translation principle. Journal of Modern Optics 51, 811–819 (2004),, doi:10.1080/09500340410001664179MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Svozil, K.: Are simultaneous Bell measurements possible? New Journal of Physics 8(39), 1–8 (2006),, doi:10.1088/1367-2630/8/3/039MathSciNetGoogle Scholar
  23. 23.
    Svozil, K.: Proposed direct test of a certain type of noncontextuality in quantum mechanics. Physical Review A 80(4), 040102 (2009),, doi:10.1103/PhysRevA.80.040102MathSciNetCrossRefGoogle Scholar
  24. 24.
    Svozil, K.: Quantum value indefiniteness. Natural Computing online first, 1–12 (2010) ISSN 1567-7818,, doi:10.1007/s11047-010-9241-xzbMATHGoogle Scholar
  25. 25.
    Zeilinger, A.: The message of the quantum. Nature 438, 743 (2005),, doi:10.1038/438743aCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Karl Svozil
    • 1
  1. 1.Institute of Theoretical PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations