Skip to main content

Introduction to Probe Beam Deflection Techniques

  • Chapter
  • First Online:
Laser Techniques for the Study of Electrode Processes

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 901 Accesses

Abstract

The importance of probe beam deflection (PBD) techniques in the electrochemical field of study is evaluated. A review of the historical development of PBD techniques, and of the closely related photothermal deflection spectroscopy, is then performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The technique has also been known as “mirage effect” or, less commonly, “optical beam deflection.” While the name “mirage effect” predates the other names, given the physical phenomena it describes, it seems more appropriate to leave such name for thermal (PDS) and not for techniques measuring concentration gradients.

References

  1. Barbero C, Miras MC (2003) Tecnicas deflectometricas aplicadas al estudio de procesos electroquímicos. In: Alonso-Vante N (ed) Electroquimica y electrocatalisis. e-libro net, Buenos Aires

    Google Scholar 

  2. Bard AJ, Faulkner L (1984) Electrochemical methods. Wiley, New York, NY

    Google Scholar 

  3. Abruña HD (1991) Electrochemical interfaces. Modern techniques for in-situ interface characterization. VCH, Weinheim

    Google Scholar 

  4. Gale RJ (1988) Spectroelectrochemistry. Theory and practice. Plenum Press, New York, NY

    Google Scholar 

  5. Iwasita T, Nart F (1997) In situ infrared spectroscopy at electrochemical interfaces. Progr Surf Sci 55:271–340. doi:10.1016/S0079-6816(97)00032-4

    Article  CAS  Google Scholar 

  6. Bittins-Cattaneo B, Cattaneo E, Königshoven P, Vieltisch W (1991) New developments in electrochemical mass spectroscopy. In: Bard AJ (ed) Electroanalytical chemistry: a series of advances, vol 17. Marcel Dekker, New York, NY, pp 181–220

    Google Scholar 

  7. Baltruschat H (1999) Differential electrochemical mass spectrometry as a tool for interfacial studies. In: Wieckowski A (ed) Interfacial electrochemistry. Theory, experiments and applications. Marcel Dekker, New York, NY

    Google Scholar 

  8. Buttry DA (1991) Applications of the quartz crystal microbalance in electrochemistry. In: Bard AJ (ed) Electroanalytical chemistry. Marcel Dekker, New York, NY, p 17

    Google Scholar 

  9. Mueller RH (1973) Optical techniques in electrochemistry. In: Muller RH (ed) Advances in electrochemistry and electrochemical engineering, vol 9. Wiley-Interscience, New York, NY.

    Google Scholar 

  10. Shaposhnik VA, Vasileva VI, Praslov DB (1995) Concentration fields of solutions under electrodialysis with ion-exchange membranes. J Membr Sci 101:23–30. doi:10.1016/0376-7388(94)00270-9 DOI:dx.doi.org

    Article  CAS  Google Scholar 

  11. Horanyi G, Inzelt G (1988) Anion involvement in electrochemical transformations of polyaniline. A radiotracer study. Electrochim Acta 33:947–952. doi:10.1016/0013-4686(88)80093-8

    Article  CAS  Google Scholar 

  12. Shimazu K, Murakoshi K, Kita H (1990) Quantitative and in-situ measurements of proton transport at polyaniline film electrodes. J Electroanal Chem 277:347–353. doi:10.1016/0022-0728(90)85114-K

    Article  CAS  Google Scholar 

  13. Rajeshwahr K, Lezna RO, de Tacconi NR (1992) Light in an electrochemical tunnel? solving analytical problems in electrochemistry via spectroscopy. Anal Chem 64:429A–441A. doi:10.1021/ac00031a001

    Article  Google Scholar 

  14. Lapkowski M, Genies EM (1990) Spectroelectrochemical studies of proton exchange processes in the electrochemical reactions of polyaniline using pH indicators. J Electroanal Chem 284:127–140. doi:10.1016/0022-0728(90)87067-T

    Article  CAS  Google Scholar 

  15. Nath A, Kanungo M, Contractor AQ (2003) In situ measurement of pH in the interior of conducting polymer microtubules. J Electroanal Chem 557:119–125. doi:10.1016/S0022-0728(03)00354-1 DOI:dx.doi.org

    Article  CAS  Google Scholar 

  16. Bard AJ, Denault G, Lee C, Mandler D, Wipf DO (1990) Scanning electrochemical microscopy: a new technique for the characterization and modification of surfaces. Acc Chem Res 23:357–363. doi:10.1021/ar00179a002

    Article  CAS  Google Scholar 

  17. Troise Frank MH, Denuault G (1993) Scanning electrochemical microscopy: probing the ingress and egress of protons from a polyaniline film. J Electroanal Chem 354:331–339. doi:10.1016/0022-0728(93)80347-K

    Article  Google Scholar 

  18. Troise Frank MH, Denuault G (1994) Scanning electrochemical microscope (SECM) study of the relationship between proton concentration and electronic charge as a function of ionic strength during the oxidation of polyaniline. J Electroanal Chem 379:399–406. doi:10.1016/0022-0728(94)87163-9

    Article  Google Scholar 

  19. Kobayashi T, Yoneyama H, Tamura H (1984) Oxidative degradation pathway of polyaniline film electrodes. J Electroanal Chem 177:293–297. doi:10.1016/0022-0728(84)80230-2

    Article  CAS  Google Scholar 

  20. Wang S, Huang X, Shan X, Foley KJ, Tao N (2010) Electrochemical surface plasmon resonance: basic formalism and experimental validation. Anal Chem 82:935–941. doi:10.1021/ac902178f

    Article  CAS  Google Scholar 

  21. Andersson O, Ulrich C, Björefors F, Liedberg B (2008) Imaging SPR for detection of local electrochemical processes on patterned surfaces. Sensor Actuator B Chem 134:545–550. doi:10.1016/j.snb.2008.05.042

    Article  Google Scholar 

  22. Iwasaki Y, Horiuchi T, Morita M, Niwa O (1999) Electrochemical reaction of Fe(CN)3−/4−6 on gold electrodes analyzed by surface plasmon resonance. Surf Sci 427–428:195–198. doi:10.1016/S0039-6028(99)00264-2 DOI:dx.doi.org

    Article  Google Scholar 

  23. Cannan S, Macklam ID, Unwin PR (2002) Three-dimensional imaging of proton gradients at microelectrode surfaces using confocal laser scanning microscopy. Electrochem Comm 4:886–892. doi:10.1016/S1388-2481(02)00482-4 DOI:dx.doi.org

    Article  CAS  Google Scholar 

  24. McCreery RL (1988) Electronic and vibrational spectroscopy of electrode surfaces. Prog Analyt Spectrosc 11:141–178

    CAS  Google Scholar 

  25. Kragt HJ, Smith CP, White HS (1990) Refractive index mapping of concentration profiles. J Electroanal Chem 378:403–407. doi:10.1016/0022-0728(90)85152-U

    Google Scholar 

  26. Boccara AC, Fournier D, Badoz J (1980) Thermo-optical. Spectroscopy: detection by the mirage effect. Appl Phys Lett 36:130–132. doi:10.1063/1.91395

    Article  CAS  Google Scholar 

  27. Murphy JC, Aamodt LC (1980) Photothermal spectroscopy using optical beam probing: mirage effect. J Appl Phys 51:4580–4588. doi:10.1063/1.328350

    Article  CAS  Google Scholar 

  28. Russo RE, McLarnon FR, Spear JD, Cairns EJ (1987) Probe beam deflection for in situ measurements of concentration and spectroscopic behavior during copper oxidation and reduction. J Electrochem Soc 134:2783–2787. doi:10.1149/1.2100287

    Article  CAS  Google Scholar 

  29. Royce BSH, Voss D, Bocarsly A (1983) Mirage effect studies of electrochemical processes. J Phys Colloq 44:C6-325–C6-329. doi:10.1051/jphyscol:1983653

    Article  Google Scholar 

  30. Mandelis A, Royce BSH (1984) Fundamental-mode laser-beam propagation in optically inhomogeneous electrochemical media with chemical species concentration gradients. Appl Opt 23:2892–2901. doi:10.1364/AO.23.002892

    Article  CAS  Google Scholar 

  31. Tam AC (1986) Applications of photoacoustic sensing techniques. Rev Mod Phys 58:381–431. doi:10.1103/RevModPhys.58.381

    Article  CAS  Google Scholar 

  32. Barbero CA, Miras MC (2003) Probe beam deflection: a novel in-situ electrochemical technique. J Arg Chem Soc 91:1–40

    CAS  Google Scholar 

  33. Trigueiro JPC, Matencio T, Moraga GA, Lopez C (2006) Principles and use of the mirage effect technique—mirage effect of concentration. Quim Nova 29:1078–1085, S0100-40422006000500031

    Article  Google Scholar 

  34. Decker F, Neuenschwander RT, Cesar CL, Penna AFS (1987) The mirage effect in electrochemistry. J Electroanal Chem Interf Electrochem 228(1-2):481–486. doi:10.1016/0022-0728(87)80125-0

    Article  CAS  Google Scholar 

  35. Decker F, Fracastoro-Decker M (1988) The mirage effect in photoelectrochemistry. J Electroanal Chem Interf Electrochem 243:187–191. doi:10.1016/0022-0728(88)85038-1

    Article  CAS  Google Scholar 

  36. Fracastoro-Decker M, Decker F (1989) The mirage effect under controlled current conditions. J Electroanal Chem Interf Electrochem 266:215–225. doi:10.1016/0022-0728(89)85069-7

    Article  CAS  Google Scholar 

  37. Brisard GM, Rudnicki JD, McLarnon FR, Cairns EJ (1995) Application of probe beam deflection to study the electrooxidation of copper in alkaline media. Electrochim Acta 40:859–865. doi:10.1016/0013-4686(94)00360-D

    Article  CAS  Google Scholar 

  38. Haas O (1989) Probe beam deflection spectroscopy as a tool for mechanistic investigations of modified electrodes. Faraday Discuss Chem Soc 88:123–131. doi:10.1039/DC9898800123

    Article  CAS  Google Scholar 

  39. Haas O, Rudnicki J, McLarnon FR, Cairns EJ (1991) Mechanistic investigations of redox polymer-coated electrodes using probe-beam deflection and cyclic voltammetry. J Chem Soc Faraday Trans 87:939–945. doi:10.1039/FT9918700939

    Article  CAS  Google Scholar 

  40. Barbero C, Miras MC, Kötz R, Haas O (1991) Alteration of the ion exchange mechanism of an electroactive polymer by manipulation of the active site: probe beam deflection and quartz crystal microbalance study of poly(aniline) and poly(N-methylaniline). J Electroanal Chem 310:437–443

    Article  CAS  Google Scholar 

  41. Barbero C, Miras MC, Haas O, Kötz R (1991) Direct in situ evidence for proton/anion exchange in polyaniline films by means of probe beam deflection. J Electrochem Soc 138:669–672. doi:10.1149/1.2085655

    Article  CAS  Google Scholar 

  42. Barbero C, Miras MC, Haas O, Kötz R (1993) Comparative study of the ion exchange and electrochemical properties of sulfonated polyaniline (SPAN) and polyaniline (PANI). Synth Met 55–57:1539–1544. doi:10.1016/0379-6779(93)90281-Z

    Article  Google Scholar 

  43. Barbero C, Kötz R, Kalaji M, Nyholm L, Peter LM (1993) Ion exchange and memory effects in polyaniline. Synth Met 55–57:1545–1551. doi:10.1016/0379-6779(93)90282-2

    Article  Google Scholar 

  44. Barbero C, Miras MC, Kötz R (1997) Sulphonated polyaniline (SPAN) films as cation insertion electrodes battery applications part II: exchange of mobile species in aqueous and non-aqueous solutions. J Electroanal Chem 437:191–198. doi:10.1016/S0022-0728(97)00357

    Article  CAS  Google Scholar 

  45. PlichonV BS (1990) Mirage detection of counter-ion flux between Prussian blue films and electrolyte solutions. J Electroanal Chem Interf Electrochem 284:141–153. doi:10.1016/0022-0728(90)87068-U

    Article  Google Scholar 

  46. Vieil E, Matencio T, Plichon V, Servagent S (1991) Hysteresis, relaxation and ionic movements in conducting polymers studied by in-situ quartz microbalance, ESR and mirage effect. Synth Met 43:2837. doi:10.1016/0379-6779(91)91186-E

    Article  Google Scholar 

  47. Vieil E (1994) Mass transfer and convolution. Part 1. Theory. J Electroanal Chem 364:9–15. doi:10.1016/0022-0728(93)02925-8

    Article  CAS  Google Scholar 

  48. Correia JP, Vieil E, Abrantes LM (2004) Electropolymerization of 3-methylthiophene studied by multiflux convolution. J Electroanal Chem 573:299–306. doi:10.1016/j.jelechem.2004.06.036

    Article  CAS  Google Scholar 

  49. Csahok E, Vieil E, Inzelt G (1998) Probe beam deflection study of the transport of ions during the redox reaction of indium-hexacyanoferrate films. J Electroanal Chem 457:251–255. doi:10.1016/S0022-0728(98)00290-3

    Article  CAS  Google Scholar 

  50. French HM, Henderson MJ, Hillman AR, Vieil E (2002) Temporal resolution of ion and solvent transfers at nickel hydroxide films exposed to LiOH. Solid State Ionics 150:27–37. doi:10.1016/S0167-2738(02)00261-8

    Article  CAS  Google Scholar 

  51. Barbero C, Calvo EJ, Miras MC, Koetz R, Haas O (2002) A probe beam deflection study of Ion exchange at poly(vinylferrocene) films in aqueous and nonaqueous electrolytes. Langmuir 18:2756–2764. doi:10.1021/la010999j

    Article  CAS  Google Scholar 

  52. Barbero C, Planes GA, Miras MC (2001) Redox coupled ion exchange in cobalt oxide films. Electrochem Comm 3:113–116. doi:10.1016/S1388-2481(01)00107-2

    Article  CAS  Google Scholar 

  53. Yánez-Heras J, Planes GA, Williams F, Barbero CA, Battaglini F (2010) Sequential electrochemical polymerization of aniline and their derivatives showing electrochemical activity at neutral pH. Electroanalysis 22:2801–2808. doi:10.1002/elan.201000325

    Article  Google Scholar 

  54. Planes GA, Miras MC, Barbero CA (2005) Double layer properties of carbon aerogel electrodes measured by probe beam deflection and AC impedance techniques. Chem Commun. 2146–2148. DOI: 10.1039/B419448A

    Google Scholar 

  55. Garcia G, Bruno MM, Planes GA, Rodriguez JL, Barbero CA, Pastor E (2008) Phys Chem Chem Phys 10:6677–6685. doi:10.1039/B806938G

    Article  CAS  Google Scholar 

  56. Garay F, Barbero CA (2006) Charge neutralization process of mobile species at Any distance from the electrode/solution interface. 1. Theory and simulation of concentration and concentration gradients developed during potentiostatic conditions. Anal Chem 78:6733–6739. doi:10.1021/ac0603678

    Article  CAS  Google Scholar 

  57. Garay F, Barbero CA (2006) Charge neutralization process of mobile species at any distance from the electrode/solution interface. 2. Concentration gradients during potential pulse experiments. Anal Chem 78:6740–6746. doi:10.1021/ac0603680

    Article  CAS  Google Scholar 

  58. Garay F, Barbero CA (2008) Charge neutralization process of mobile species developed during potentiodynamic conditions. Part 1: theory. J Electroanal Chem 624:218–227. doi:10.1016/j.jelechem.2008.09.010

    Article  CAS  Google Scholar 

  59. Garay F, Iglesias RI, Barbero CA (2008) Charge neutralization process of mobile species developed during potentiodynamic conditions. Part 2: simulation and fit of probe beam deflection experiments. J Electroanal Chem 624:211–217. doi:10.1016/j.jelechem.2008.09.009

    Article  CAS  Google Scholar 

  60. Barbero C (2005) Ion exchange at the electrode/electrolyte interface studied by probe beam deflection techniques. Phys Chem Chem Phys 7:1885–1899. doi:10.1039/b419382b

    Article  CAS  Google Scholar 

  61. Brolo AG, Yang Y (2004) Investigating mechanisms of anodic film formation by electrochemical probe beam deflection (EPBD). Electrochim Acta 49:339–347. doi:10.1016/j.electacta.2003.08.016

    Article  CAS  Google Scholar 

  62. Wang J, Wang Z, Scherson D (2007) Beam probe deflection analysis of redox active species irreversibly adsorbed on electrode surfaces. J Electrochem Soc 154(9):F165–F171. doi:10.1149/1.2754070

    Article  CAS  Google Scholar 

  63. Shi P, Fromondi J, Shi Q, Wang Z, Scherson DA (2007) Simultaneous in situ reflectance and probe beam deflection measurements at solid electrode−aqueous electrolyte interfaces. Anal Chem 79:202–207. doi:10.1021/ac061452i

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Otto Haas and Ruediger Koetz for introducing him to the probe beam deflection techniques at Paul Scherrer Institut (Switzerland). The excellent working environment and freedom enjoyed there allow developing the understanding of the technique. The author also thanks all the students and fellow researchers who perform the work described here.

Cesar Barbero is a permanent fellow of CONICET. The financial support of FONCYT, CONICET, MinCyT-Cordoba, and SECY-UNRC during the writing of this book is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyözö G. Láng .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Láng, G.G., Barbero, C.A. (2012). Introduction to Probe Beam Deflection Techniques. In: Laser Techniques for the Study of Electrode Processes. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27651-4_9

Download citation

Publish with us

Policies and ethics