Advertisement

Applications: Selected Experimental Results

  • Gyözö G. Láng
  • Cesar A. Barbero
Chapter
Part of the Monographs in Electrochemistry book series (MOEC)

Abstract

In this chapter, selected results of bending beam (bending plate) experiments with optical detection are presented as illustrative examples. In order to demonstrate the capabilities and limitations of stress measurements in electrochemical systems, relevant results obtained using the bending beam method and Kösters laser interferometry are discussed (e.g., platinum and gold in contact with electrolyte solutions, cyclic voltammetry and potential pulse experiments, stress changes in thin films and passive layers on metals, insertion of species into materials, monitoring of the electrochemical degradation of polymer films, simultaneous oscillations of electrode potential, surface mass and interfacial stress in the course of galvanostatic oxidation of formic acid on platinum, etc.).

Keywords

Stress Change Interfacial Stress Electrochemical Quartz Crystal Microbalance Specific Surface Energy Sodium Sulfate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Láng GG, Seo M (2000) J Electroanal Chem 490:98–101CrossRefGoogle Scholar
  2. 2.
    Rokob TA, Láng GG (2005) Electrochim Acta 51:93–97CrossRefGoogle Scholar
  3. 3.
    Tian F, Pei JH, Hedden DL, Brown GM, Thundat T (2004) Ultramicroscopy 100:217–223CrossRefGoogle Scholar
  4. 4.
    Tabard-Cossa V, Godin M, Beaulieu LY, Grütter P (2006) Sensor Actuator B Chem 119:352–354CrossRefGoogle Scholar
  5. 5.
    Láng GG, Rokob TA, Horányi G (2005) Ultramicroscopy 104:330–332CrossRefGoogle Scholar
  6. 6.
    Láng GG (2008) Bending beam method. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, BerlinGoogle Scholar
  7. 7.
    Frumkin AN (1963) Holography and holographic interferometry in electrochemistry. In: Delahay P, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering. Muller RH (ed) Optical techniques in electrochemistry, vol 3. Wiley, New York, NYGoogle Scholar
  8. 8.
    Plieth WJ, Vetter KJ (1968) Ber Bunsenges Phys Chem 72:673–680Google Scholar
  9. 9.
    Plieth WJ, Vetter KJ (1969) Ber Bunsenges Phys Chem 73:79–86Google Scholar
  10. 10.
    Soffer A (1972) J Electroanal Chem 40:153–165CrossRefGoogle Scholar
  11. 11.
    Frumkin AN, Petrii OA (1975) Electrochim Acta 20:347–359CrossRefGoogle Scholar
  12. 12.
    Fredlein RA, Damjanovic A, Bockris JO’M (1971) Surf Sci 25:261–264CrossRefGoogle Scholar
  13. 13.
    Láng GG, Ujvári M, Bazsó F, Vesztergom S, Ujhelyi F (2012) Electrochim Acta http://dx.doi.org/10.1016/j.electacta.2012.01.068; http://www.sciencedirect.com/science/article/pii/S0013468612001065
  14. 14.
    Láng G, Torma V, Heusler KE (1997) Changes of the specific surface energy of platinum in aqueous sulfate solutions. In: Korzeniewski C, Conway BE (eds) The electrochemical double layer, physical electrochemistry, proceedings volume 97-17. The Electrochemical Society Inc., Pennington NJGoogle Scholar
  15. 15.
    Láng GG (2009) Application of the koesters interferometer in electrochemistry. In: Halsey D, Raynor W (eds) Handbook of interferometers; research, technology and applications. Nova Science Publishers, New York, NYGoogle Scholar
  16. 16.
    Láng GG (2008) Kösters laser interferometer. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, BerlinGoogle Scholar
  17. 17.
    Láng G, Ueno K, Ujvári M, Seo M (2000) J Phys Chem B 104:2785–2789CrossRefGoogle Scholar
  18. 18.
    Láng GG, Seo M, Heusler KE (2005) J Solid State Electrochem 9:347–353CrossRefGoogle Scholar
  19. 19.
    Fredlein RA, Bockris JO’M (1974) Surf Sci 46:641–652CrossRefGoogle Scholar
  20. 20.
    Smetanin M, Viswanath RN, Kramer D, Beckmann D, Koch T, Kibler LA, Kolb DM, Weissmüller J (2008) Langmuir 24:8561–8567CrossRefGoogle Scholar
  21. 21.
    Láng G, Heusler KE (1995) J Electroanal Chem 391:169–179CrossRefGoogle Scholar
  22. 22.
    Láng G, Heusler KE (1995) Russ J Electrochem 31:759–767Google Scholar
  23. 23.
    Láng G, Heusler KE (1995) Elektrokhimiya 31:826–835Google Scholar
  24. 24.
    Kongstein OE, Bertocci U, Stafford GR (2005) J Electrochem Soc 152:C116–C123CrossRefGoogle Scholar
  25. 25.
    Seo M, Yamazaki M (2007) J Solid State Electrochem 11:1365–1373CrossRefGoogle Scholar
  26. 26.
    Seo M, Hagioi M (2007) Corros Sci 49:176–185CrossRefGoogle Scholar
  27. 27.
    Jaeckel L, Láng G, Heusler K (1994) Electrochim Acta 39:1031–1038CrossRefGoogle Scholar
  28. 28.
    Friesen C, Dimitrov N, Cammarata RC, Sieradzki K (2001) Langmuir 17:807–815CrossRefGoogle Scholar
  29. 29.
    Shin JW, Bertocci U, Stafford GR (2010) J Phys Chem 114:7926–7932Google Scholar
  30. 30.
    Stafford GR, Bertocci U (2009) J Phys Chem C 113:261–268CrossRefGoogle Scholar
  31. 31.
    Stafford GR, Bertocci U (2006) J Phys Chem B 110:15493–15498CrossRefGoogle Scholar
  32. 32.
    Shin JW, Bertocci U, Stafford GR (2010) J Phys Chem C 114:17621–17628CrossRefGoogle Scholar
  33. 33.
    Láng G, Heusler KE (1997) J Chem Soc Faraday Trans 93:583–589CrossRefGoogle Scholar
  34. 34.
    Van Overmeere Q, Nysten B, Proost J (2009) Appl Phys Lett 94:074103CrossRefGoogle Scholar
  35. 35.
    Van Overmeere Q, Blaffart F, Proost J (2010) Electrochem Commun 12:1174–1176CrossRefGoogle Scholar
  36. 36.
    Vanhumbeeck J-F, Tian H, Schryvers D, Proost J (2010) Corr Sci 53:1269–1277CrossRefGoogle Scholar
  37. 37.
    Proost J, Vanhumbeeck J-F, Van Overmeere Q (2009) Electrochim Acta 55:350–357CrossRefGoogle Scholar
  38. 38.
    Kim J-D, Pyun S-I, Seo M (2003) Electrochim Acta 48:1123–1130CrossRefGoogle Scholar
  39. 39.
    Láng GG, Rokob TA, Ujvari M, Horányi G (2005) Electrochemical aspects of the behavior of perchlorate ions in the presence of iron group metals. In: Marcus P, Maurice V (eds) Passivation of metals and semiconductors, and properties of thin oxide layers. Elsevier, AmsterdamGoogle Scholar
  40. 40.
    Herbelin JM, Barbouth N, Marcus P (1990) J Electrochem Soc 137:3410–3414CrossRefGoogle Scholar
  41. 41.
    Marcus P, Herbelin JM (1993) Corros Sci 34:1123–1145CrossRefGoogle Scholar
  42. 42.
    Charlot G, Collumeau A, Marchon MJC (1971) Oxidation-reduction potentials of inorganic substances in aqueous solution. Butterworths, LondonGoogle Scholar
  43. 43.
    Zucchi F, Fonsati M, Trabanelli G (1998) J Appl Electrochem 28:441–447CrossRefGoogle Scholar
  44. 44.
    Láng GG, Horányi G (2003) J Electroanal Chem 552:197–211CrossRefGoogle Scholar
  45. 45.
    Ujvári M, Láng G (2011) J Electrochem Sci Eng 1:1–26Google Scholar
  46. 46.
    Horányi G (1996) Electrosorption studies in electrocatalysis. In: Spivey JJ (ed) Catalysis. A specialist periodical report. The Royal Society of Chemistry, Cambridge, MAGoogle Scholar
  47. 47.
    Láng GG, Ujvári M (in press) Trends in the study of the electrochemical stability of perchlorate ions against reductive attacks. In: Matthews LE (ed) Perchlorates: production, uses and health effects. Nova Science Publishers, Hauppauge NYGoogle Scholar
  48. 48.
    Lang U, Naujoks N, Dual J (2009) Synthetic Met 159:473–479CrossRefGoogle Scholar
  49. 49.
    Lilliedala MR, Medforda AJ, Madsena MV, Norrmana K, Krebs FC (2010) Sol Energ Mat Sol C 94:2018–2031CrossRefGoogle Scholar
  50. 50.
    Nasybulin E, Wei S, Cox M, Kymissis I, Levon K (2011) J Phys Chem C 115:4307–4314CrossRefGoogle Scholar
  51. 51.
    Scott JC (2004) Science 304:62–63CrossRefGoogle Scholar
  52. 52.
    Möller S, Perlov C, Jackson W, Taussig C, Forrest SR (2003) Nature 426:166–169CrossRefGoogle Scholar
  53. 53.
    Cui X, Martin DC (2003) Sensor Actuator B Chem 89:92–102CrossRefGoogle Scholar
  54. 54.
    Vázquez M, Danielsson P, Bobacka J, Lewenstam A, Ivaska A (2004) Sensor Actuat B-Chem 97:182–189CrossRefGoogle Scholar
  55. 55.
    Bobacka J (1999) Anal Chem 71:4932–4937CrossRefGoogle Scholar
  56. 56.
    Drillet JF, Dittmeyer R, Jüttner K, Li L, Mangold KM (2006) Fuel Cells 6:432–438CrossRefGoogle Scholar
  57. 57.
    Drillet JF, Dittmeyer R, Jüttner K (2007) J Appl Electrochem 37:1219–1226CrossRefGoogle Scholar
  58. 58.
    Bobacka J, Lewenstam A, Ivaska A (2000) J Electroanal Chem 489:17–27CrossRefGoogle Scholar
  59. 59.
    Yamato H, Ohwa M, Wernet W (1995) J Electroanal Chem 397:163–170CrossRefGoogle Scholar
  60. 60.
    Sakmeche N, Aeiyach S, Aaron JJ, Jouini M, Lacroix JC, Lacaze PC (1999) Langmuir 15:2566–2574CrossRefGoogle Scholar
  61. 61.
    Pei Q, Inganaes O (1992) J Phys Chem 96:10507–10514CrossRefGoogle Scholar
  62. 62.
    Pei Q, Inganaes O (1993) J Phys Chem 97:6034–6041CrossRefGoogle Scholar
  63. 63.
    Tabard-Cossa V, Godin M, Grütter P, Burgess I, Lennox RB (2005) J Phys Chem B 109:17531–17537CrossRefGoogle Scholar
  64. 64.
    Ujvári M, Takács M, Vesztergom S, Bazsó F, Ujhelyi F, Láng GG (2011) J Solid State Electrochem 15(11–12):2341–2349. doi: 10.1007/s10008-011-1472-y CrossRefGoogle Scholar
  65. 65.
    Pyun SI, Go JY, Jang TS (2004) Electrochim Acta 49:4477–4486CrossRefGoogle Scholar
  66. 66.
    Go JY, Shin HC, Pyun SI (2005) Electrochim Acta 51:566–567CrossRefGoogle Scholar
  67. 67.
    Han JN, Lee JW, Seo M, Pyun SI (2001) J Electroanal Chem 506:1–10CrossRefGoogle Scholar
  68. 68.
    Shin JW, Bertocci U, Stafford GR (2011) J Electrochem Soc 158:F127–F134CrossRefGoogle Scholar
  69. 69.
    Stafford GR, Bertocci U (2009) J Phys Chem C 113:13249–13256CrossRefGoogle Scholar
  70. 70.
    Sethuramana VA, Chon MJ, Shimshak M, Srinivasan V, Guduru PR (2010) J Power Sources 195:5062–5066CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Inst. ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Chemistry DepartmentUniversidad Nacional de Rio CuartoRio Cuarto CórdobaArgentina

Personalised recommendations