Advertisement

Detection of the Cantilever Deflection by Microscopy

  • Gyözö G. Láng
  • Cesar A. Barbero
Chapter
Part of the Monographs in Electrochemistry book series (MOEC)

Abstract

In Chap. 6, advantages and limitations of some nonoptical techniques (e.g., scanning tunneling microscopy) used for the experimental determination of changes in cantilever deflection or for the measurement of the deformation of thin plates/disks in electrochemical systems are discussed. Typical experimental arrangements have been presented. Possible sources of errors (interaction forces between surfaces, clamping of probes, contact angles, design of the electrochemical cells) have been analyzed.

Keywords

Atomic Force Microscope Contact Angle Scanning Tunneling Microscope Surface Stress Sulfuric Acid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Binning G, Rohrer H (1982) Helv Phys Acta 55:726–735Google Scholar
  2. 2.
    Binning G, Quate CF, Gerber Ch (1986) Phys Rev Lett 56:930–933CrossRefGoogle Scholar
  3. 3.
    Sarid D (1991) Scanning force microscopy. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Eastman T, Zhu DM (1996) Langmuir 12:2859–2862CrossRefGoogle Scholar
  5. 5.
    Butt HJ, Jaschke M, Drucker W (1995) Bioelectrochem Bioenerg 38:191–201CrossRefGoogle Scholar
  6. 6.
    Ibach H, Bach CE, Giesen M, Grossmann A (1997) Surf Sci 375:107–119CrossRefGoogle Scholar
  7. 7.
    Haiss W, Sass JK (1995) J Electroanal Chem 386:267–270CrossRefGoogle Scholar
  8. 8.
    Haiss W, Sass JK (1996) J Electroanal Chem 410:119–124CrossRefGoogle Scholar
  9. 9.
    Haiss W, Sass JK (1996) Langmuir 12:4311–4313CrossRefGoogle Scholar
  10. 10.
    Haiss W, Nichols RJ, Sass J-K (1997) Surf Sci 388:141–149CrossRefGoogle Scholar
  11. 11.
    Haiss W, Nichols RJ, Sass JK, Charle KP (1998) J Electroanal Chem 452:199–202CrossRefGoogle Scholar
  12. 12.
    Nichols RJ, Nouar T, Lucas CA, Haiss W, Hofer WA (2002) Surf Sci 513:263–271CrossRefGoogle Scholar
  13. 13.
    Láng GG, Sas NS, Vesztergom S (2009) Chem Biochem Eng Q 23:1–9Google Scholar
  14. 14.
    Ibach H (1997) Surf Sci Rep 29:193–263CrossRefGoogle Scholar
  15. 15.
    Haiss W (2001) Rep Prog Phys 64:591–648CrossRefGoogle Scholar
  16. 16.
    Conroy JFT, Bruckner-Lea CJ, Janata J (1997) Solid State Ionics 94:161–164CrossRefGoogle Scholar
  17. 17.
    Conroy JFT, Caldwell K, Bruckner-Lea CJ, Janata J (1996) J Phys Chem 100:18222–18228CrossRefGoogle Scholar
  18. 18.
    Conroy JFT, Hlady V, Bruckner-Lea CJ, Janata J (1996) J Phys Chem 100:18229–18233CrossRefGoogle Scholar
  19. 19.
    Bockris JO’M, Parry-Jones R (1953) Nature 171:930–931CrossRefGoogle Scholar
  20. 20.
    Bockris JO’M, Argade SD (1969) J Chem Phys 50:1622–1623CrossRefGoogle Scholar
  21. 21.
    Bockris JO’M, Sen RK (1972) Surf Sci 30:237–241CrossRefGoogle Scholar
  22. 22.
    Voronaeva TN, Deryagin BV, Kabanov BN (1962) Kolloid Zhurnal (USSR) 26:396–404Google Scholar
  23. 23.
    Bockris JO’M (1992) Electrons, interfaces, and societies in the 21st century. In: Murphy OJ, Srinivasan S, Conway BE (eds) Electrochemistry in transition. Plenum Press, New YorkGoogle Scholar
  24. 24.
    Teague EC (1986) J Res Natl Bur Stand 91:171–233CrossRefGoogle Scholar
  25. 25.
    Raiteri R, Preuss M, Grattarola M, Butt HJ (1998) Colloids Surf A 136:191–197CrossRefGoogle Scholar
  26. 26.
    Arai T, Fujihira M (1996) J Vac Sci Technol B 14:1378–1382CrossRefGoogle Scholar
  27. 27.
    Vesztergom S, Ujvári M, Láng GG (2011) Electrochem Commun 13:378–381CrossRefGoogle Scholar
  28. 28.
    Inzelt G, Berkes BB, Kriston Á (2010) ECS Trans 25:137–156CrossRefGoogle Scholar
  29. 29.
    Inzelt G, Berkes BB, Kriston Á (2010) Electrochim Acta 55:4742–4749CrossRefGoogle Scholar
  30. 30.
    Inzelt G, Berkes BB, Kriston Á, Székely A (2011) J Solid State Electrochem 15:901–915CrossRefGoogle Scholar
  31. 31.
    Binnig G, Quate CF, Gerber CH (1986) Phys Rev Lett 56:930–933CrossRefGoogle Scholar
  32. 32.
    Boisen A, Dohn S, Keller SS, Schmid S, Tenje M (2011) Rep Prog Phys 036101 (30 pp)Google Scholar
  33. 33.
    Chen GY, Thundat T, Wachter EA, Warmack RJ (1995) J Appl Phys 77:3618–3622CrossRefGoogle Scholar
  34. 34.
    Manne S, Gaub HE (1997) Curr Opin Colloid Interface Sci 2:145152Google Scholar
  35. 35.
    Barnes JR, Stephenson RJ, Weiland ME, Gerber Ch, Gimzewski JK (1994) Nature 372:79–81CrossRefGoogle Scholar
  36. 36.
    Thundat T, Sharp SL, Fisher WG, Warmack RJ, Wachter EA (1995) Appl Phys Lett 66:1563–1565CrossRefGoogle Scholar
  37. 37.
    Raiteri R, Butt HJ (1995) J Phys Chem 99:15728–15732CrossRefGoogle Scholar
  38. 38.
    O’Shea SJ, Welland ME, Brunt TA, Ramadan AR, Rayment TJ (1996) J Vac Sci Technol B 14:1383–1385CrossRefGoogle Scholar
  39. 39.
    Brunt TA, Chabala ED, Rayment T, O’Shea SJ, Weiland ME (1996) J Chem Soc Faraday Trans 92:3807–3812CrossRefGoogle Scholar
  40. 40.
    Brunt TA, Rayment T, O’Shea SJ, Weiland ME (1996) Langmuir 12:5942–5946CrossRefGoogle Scholar
  41. 41.
    Putman CAJ, De Grooth BGD, Van Hulst NF, Greve J (1992) J Appl Phys 72:6–12CrossRefGoogle Scholar
  42. 42.
    Meyer G, Amer NM (1990) Appl Phys Lett 56:2100–2101CrossRefGoogle Scholar
  43. 43.
    Butt HJ (1996) J Colloid Interface Sci 180:251–26CrossRefGoogle Scholar
  44. 44.
    Raiteri R, Butt HJ, Grattarola M (2000) Electrochim Acta 46:157–163CrossRefGoogle Scholar
  45. 45.
    Miyatani T, Fujihira M (1997) J Appl Phys 81:7099–7115CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Inst. ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Chemistry DepartmentUniversidad Nacional de Rio CuartoRio Cuarto CórdobaArgentina

Personalised recommendations