Advertisement

Some Problems Related to the Surface Thermodynamics of “Solid Electrodes”

  • Gyözö G. Láng
  • Cesar A. Barbero
Chapter
Part of the Monographs in Electrochemistry book series (MOEC)

Abstract

In this chapter, existing thermodynamic theories for solid–liquid interfaces are critically reviewed. The definition of the “generalized surface intensive parameter” is discussed. Some critical remarks have been made concerning the approach generally used in the literature. A brief review of the derivation of the “generalized Lippmann equation” held to be valid generally for solid electrodes is given. Special attention has been paid to the mathematical consequences of the homogeneous property of the fundamental equation. Inconsistencies in the derivation are cited. Problems related to the so-called “surface Gibbs−Duhem equation” are discussed. Some remarks concerning a recent theoretical debate on the derivation of the Shuttleworth equation are also included.

Keywords

Liquid Interface Surface Stress Fundamental Equation Homogeneous Function Extensive Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Trasatti S, Parsons R (1986) Pure Appl Chem 58:437–454CrossRefGoogle Scholar
  2. 2.
    Láng G, Heusler KE (1994) J Electroanal Chem 377:1–7CrossRefGoogle Scholar
  3. 3.
    Láng G, Heusler KE (1999) J Electroanal Chem 472:168–173CrossRefGoogle Scholar
  4. 4.
    Marichev VA (2006) Surf Sci 600:4527–4536CrossRefGoogle Scholar
  5. 5.
    Marichev VA (2010) Adv Colloid Interface Sci 157:34–60CrossRefGoogle Scholar
  6. 6.
    Go J-Y, Pyun S-I (2004) J Kor Electrochem Soc 7:211–219CrossRefGoogle Scholar
  7. 7.
    Guidelli R (1998) J Electroanal Chem 453:69–77Google Scholar
  8. 8.
    Guidelli R (1999) J Electroanal Chem 472:174–177Google Scholar
  9. 9.
    Lipkowski J, Schmickler W, Kolb DM, Parsons R (1998) J Electroanal Chem 452:193–197Google Scholar
  10. 10.
    Schmickler W, Leiva E (1998) J Electroanal Chem 453:61–67CrossRefGoogle Scholar
  11. 11.
    Valincius G (1999) J Electroanal Chem 478:40–49CrossRefGoogle Scholar
  12. 12.
    Haiss W (2001) Rep Prog Phys 64:591–648CrossRefGoogle Scholar
  13. 13.
    Tian F, Pei JH, Hedden DL, Brown GM, Thundat T (2004) Ultramicroscopy 100:217–223CrossRefGoogle Scholar
  14. 14.
    Tabard-Cossa V, Godin M, Burgess IJ, Monga T, Lenox RB, Grütter P (2007) Anal Chem 79:8136–8143CrossRefGoogle Scholar
  15. 15.
    Kramer D (2007) Phys Chem Chem Phys 10:168–177CrossRefGoogle Scholar
  16. 16.
    Garcia-Araez N (2011) J Phys Chem C 115:501–510CrossRefGoogle Scholar
  17. 17.
    Eriksson JC (1969) Surf Sci 14:221–246CrossRefGoogle Scholar
  18. 18.
    Linford RG (1973) J Electroanal Chem 43:155–157CrossRefGoogle Scholar
  19. 19.
    Linford RG (1978) Chem Rev 78:81–95CrossRefGoogle Scholar
  20. 20.
    Couchman PR, Jesser WA, Kuhlmann-Wilsdorf D (1972) Surf Sci 33:429–436CrossRefGoogle Scholar
  21. 21.
    Couchman PR, Jesser WA (1973) Surf Sci 34:212–224CrossRefGoogle Scholar
  22. 22.
    Couchman PR, Everett DH, Jesser WA (1975) J Colloid Interface Sci 52:410–411CrossRefGoogle Scholar
  23. 23.
    Couchman PR, Everett DH (1976) J Electroanal Chem 67:382–386CrossRefGoogle Scholar
  24. 24.
    Couchman PR, Davidson CR (1977) J Electroanal Chem 85:407–409CrossRefGoogle Scholar
  25. 25.
    Gutman EM (1995) J Phys Condens Matter 7:L663–L667CrossRefGoogle Scholar
  26. 26.
    Shuttleworth R (1950) Proc Phys Soc A 63:444–457CrossRefGoogle Scholar
  27. 27.
    Herring C (1953) The use of classical macroscopic concepts in surface energy problem. In: Gomer R, Smith CS (eds) Structure and properties of solid surfaces. The University of Chicago Press, ChicagoGoogle Scholar
  28. 28.
    Bottomley DJ, Makkonen L, Kolari K (2009) Surf Sci 603:97–101CrossRefGoogle Scholar
  29. 29.
    Hermann R (1973) Geometry, physics and systems. Marcel Dekker, New YorkGoogle Scholar
  30. 30.
    Bottomley DJ, Makkonen L, Kolari K (2009) Surf Sci 603:2347CrossRefGoogle Scholar
  31. 31.
    Bottomley DJ, Makkonen L, Kolari K (2009) Surf Sci 603:2350–2351CrossRefGoogle Scholar
  32. 32.
    Bottomley DJ, Makkonen L, Kolari K (2009) Surf Sci 603:2356–2357CrossRefGoogle Scholar
  33. 33.
    Eriksson JC, Rusanov AI (2009) Surf Sci 603:2348–2349CrossRefGoogle Scholar
  34. 34.
    Marichev VA (2009) Surf Sci 603:2345–2346CrossRefGoogle Scholar
  35. 35.
    Ibach H (2009) Surf Sci 603:2352–2355CrossRefGoogle Scholar
  36. 36.
    Rusanov AI, Shchekin AK, Tatyanenko DV (2009) J Chem Phys 131:161104CrossRefGoogle Scholar
  37. 37.
    Marichev VA (2009) Colloids Surf A Physicochem Eng Asp 345:1–12CrossRefGoogle Scholar
  38. 38.
    Bottomley DJ, Makkonen L, Kolari K (2010) Surf Sci 604:2066–2068CrossRefGoogle Scholar
  39. 39.
    Eriksson JC, Rusanov AI (2010) Surf Sci 603:1062–1063CrossRefGoogle Scholar
  40. 40.
    Eriksson JC, Rusanov AI (2010) Surf Sci 604:2069–2071CrossRefGoogle Scholar
  41. 41.
    Marichev VA (2010) Prot Met 46:383–402Google Scholar
  42. 42.
    Marichev VA (2011) Prot Met 47:25–30Google Scholar
  43. 43.
    Marichev VA (2011) Colloids Surf A Physicochem Eng Asp 389:63–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Inst. ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Chemistry DepartmentUniversidad Nacional de Rio CuartoRio Cuarto CórdobaArgentina

Personalised recommendations