Comparison of Probe Beam Deflection Techniques with Other Methods to Monitor Fluxes of Mobile Species

  • Gyözö G. Láng
  • Cesar A. Barbero
Part of the Monographs in Electrochemistry book series (MOEC)


Different experimental techniques, which have been used to monitor the ion transport in electrochemical systems, are briefly reviewed. Among them are electrochemical techniques (scanning electrochemical microscopy, ring-disk rotating electrode, ion sensors), spectroelectrochemical techniques (in situ UV–visible spectroscopy with indicator dyes, infrared, and Raman), and various others (radiotracer detection, surface plasmon resonance, interferometry, electrochemical quartz crystal microbalance, etc.). The strengths and weakness of each technique is analyzed. In those cases where the same or similar systems have been also studied using PBD, the results are compared.


Surface Plasmon Resonance Mobile Species Electrochemical Quartz Crystal Microbalance Refractive Index Gradient Surface Plasmon Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb FM, Behm RJ (1998) Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145:2354–2358. doi: 10.1149/1.1838642 Google Scholar
  2. 2.
    Prater KB, Bard AJ (1970) Rotating ring-disk electrodes. J Electrochem Soc 117:1517–1520. doi: 10.1149/1.2407362 Google Scholar
  3. 3.
    Harvey SLR, Parker KH, O’Hare D (2007) Theoretical evaluation of the collection efficiency at ring-disc microelectrodes. J Electroanal Chem 610:122–130. doi: 10.1016/j.jelechem.2007.07.006 Google Scholar
  4. 4.
    Toda K, Oguni S, Takamatsu Y, Sanemasa I (1999) A wall-jet ring disk electrode fabricated within a thin-layered micromachined cell. J Electroanal Chem 479:57–63. doi: 10.1016/S0022-0728(99)00430-1 Google Scholar
  5. 5.
    Schmidt TJ, Paulus UA, Gasteiger HA, Behm RJ (2001) The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J Electroanal Chem 508:41–47. doi: 10.1016/S0022-0728(01)00499-5 DOI:dx.doi.orgGoogle Scholar
  6. 6.
    Coutanceau C, Croissant MJ, Napporn T, Lamy C (2000) Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film. Electrochim Acta 46:579–588. doi: 10.1016/S0013-4686(00)00641-1 Google Scholar
  7. 7.
    Maruyama J, Inaba M, Ogumi Z (1998) Rotating ring-disk electrode study on the cathodic oxygen reduction at Nafion(R)-coated gold electrodes. J Electroanal Chem 458:175–182. doi: 10.1016/S0022-0728(98)00362-3 Google Scholar
  8. 8.
    Strbac S, Anastasijevic NA, Adzic RR (1994) Oxygen reduction on Au(111) and vicinal Au(332) faces: a rotating disc and disc-ring study. Electrochim Acta 39:983–990. doi: 10.1016/0013-4686(94)85116-6 Google Scholar
  9. 9.
    Zhang J, Pietro WJ, Lever ABP (1996) Rotating ring-disk electrode analysis of CO2 reduction electrocatalyzed by a cobalt tetramethylpyridoporphyrazine on the disk and detected as CO on a platinum ring. J Electroanal Chem 403:93–100. doi: 10.1016/0022-0728(95)04270-9 Google Scholar
  10. 10.
    Gu Y, Zhang Y, Zhang F, Wei J, Wang C, Du Y, Ye W (2010) Investigation of photoelectrocatalytic activity of Cu2O nanoparticles for p-nitrophenol using rotating ring-disk electrode and application for electrocatalytic determination. Electrochim Acta 56:953–958. doi: 10.1016/j.electacta.2010.09.051 Google Scholar
  11. 11.
    Santos MC, Mascaro LH, Machado SAS (1998) Voltammetric and rotating ring-disk studies of underpotential deposition of Ag and Cu on polycrystalline Au electrodes in aqueous H2SO4. Electrochim Acta 43:2263–2272. doi: 10.1016/S0013-4686(97)10171-2 Google Scholar
  12. 12.
    Kötz R, Barbero C, Haas O (1993) Probe beam deflection for the analysis of ion fluxes at the solid/liquid interface. Ber Bunsenges Phys Chem 97:427–430. doi: 10.1002/bbpc.19930970332 Google Scholar
  13. 13.
    Barbero C, Miras MC, Kötz R (1992) Electrochemical mass transport studied by probe beam deflection: potential step experiments. Electrochim Acta 37:429–443. doi: 10.1016/0013-4686(92)87032-U Google Scholar
  14. 14.
    Menshykau D, O’Mahony AM, Cortina-Puig M, del Campo FJ, Munoz FX, Compton RG (2010) Chronoamperometry on ring, ring-recessed and disk electrodes, and their arrays. The sensitive measurement of diffusion coefficients independent of a knowledge of concentration or number of electrons transferred. J Electroanal Chem 647:20–28. doi: 10.1016/j.jelechem.2010.05.018 Google Scholar
  15. 15.
    Kobayashi T, Yoneyama H, Tamura H (1984) Oxidative degradation pathway of polyaniline film electrodes. J Electroanal Chem 177:293–297. doi: 10.1016/0022-0728(84)80230-2 Google Scholar
  16. 16.
    Mu Shaolin M, Sun Donghao S (1991) The investigation of the electrochemical polymerization of aniline and o-methylaniline by means of the rotating ring-disk electrode. Synth Met 43:3085–3088. doi: 10.1016/0379-6779(91)91244-5 Google Scholar
  17. 17.
    Henderson MJ, Hillman AR, Vieil E (1998) A combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD) study of a poly(o-toluidine) modified electrode in perchloric acid solution. J Electroanal Chem 454:1–8. doi: 10.1016/S0022-0728(98)00245-9 Google Scholar
  18. 18.
    Vieil E (1994) Mass transfer and convolution. Part 1. Theory. J Electroanal Chem 364:9–15. doi: 10.1016/0022-0728(93)02925-8 Google Scholar
  19. 19.
    Vieil E, Meerholz K, Matencio T, Heinze J (1994) Mass transfer and convolution: Part II. In situ optical beam deflection study of ionic exchanges between polyphenylene films and a 1:1 electrolyte. J Electroanal Chem 368:183-191. doi:  10.1016/0022-0728(93)03110-B
  20. 20.
    Stockgen U, Heusler KE (1999) A mathematical method to eliminate the transfer time from disc to ring at a rotating ring-disc electrode. Electrochim Acta 44:2765–2770. doi: 10.1016/S0013-4686(98)00398-3 Google Scholar
  21. 21.
    Bard AJ, Denault G, Lee C, Mandler D, Wipf DO (1990) Scanning electrochemical microscopy: a new technique for the characterization and modification of surfaces. Acc Chem Res 23:357–363. doi: 10.1021/ar00179a002 Google Scholar
  22. 22.
    Troise Frank MH, Denuault G (1994) J Electroanal Chem 379:399–406. doi:  10.1016/0022-0728(94)87163-9 Google Scholar
  23. 23.
    Bard AJ, Fu Fan RRF, Kwak J, Lev O (1989) Scanning electrochemical microscopy. Introduction and principles. Anal Chem 61:132–138. doi: 10.1021/ac00177a011 Google Scholar
  24. 24.
    Engstrom RC, Pharr CM (1989) Scanning electrochemical microscopy. Anal Chem 61:1099A–1104A. doi: 10.1021/ac00194a002 Google Scholar
  25. 25.
    Bard AJ, Fan FRF, Mirkin MV (1994) Scanning electrochemical microscopy. In: Bard AJ (ed) Electroanalytical chemistry. Marcel Dekker, New YorkGoogle Scholar
  26. 26.
    Bard AJ, Fan RFR, Mirkin M (1995) Scanning electrochemical microscopy. In: Rubenstein I (ed) Physical electrochemistry: principles, methods, and applications. Marcel Dekker, New YorkGoogle Scholar
  27. 27.
    Bard AJ, Denuault G, Friesner RA, Dornblaser BC, Tuckerman LS (1991) Scanning electrochemical microscopy: theory and application of the transient (chronoamperometric) SECM response. Anal Chem 63:1282–1288. doi: 10.1021/ac00013a019 Google Scholar
  28. 28.
    Fleischmann M, Rolinson DR, Pons S (1988) Ultramicroelectrodes. Datatech Systems, New YorkGoogle Scholar
  29. 29.
    Martin RD, Unwin PR (1998) Theory and experiment for the substrate generation/tip collection mode of the scanning electrochemical microscope: application as an approach for measuring the diffusion coefficient ratio of a redox couple. Anal Chem 70:276–284. doi: 10.1021/ac970681p Google Scholar
  30. 30.
    Engstrom RC, Weber M, Wunder DJ, Burgess R, Winquist S (1986) Measurements within the diffusion layer using a microelectrode probe. Anal Chem 58:844–848. doi: 10.1021/ac00295a044 Google Scholar
  31. 31.
    Engstrom RC, Meany T, Tople R, Wightman RM (1987) Spatiotemporal description of the diffusion layer with a microelectode probe. Anal Chem 59:2005–2010. doi: 10.1021/ac00142a024 Google Scholar
  32. 32.
    Sánchez-Sánchez CM, Rodríguez-López J, Bard AJ (2008) scanning electrochemical microscopy. 60. Quantitative calibration of the secm substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Anal Chem 80:3254–3260. doi:  10.1021/ac702453n Google Scholar
  33. 33.
    Syritski V, Gyurcsanyi RE, Opik A, Toth K (2005) Synthesis and characterization of inherently conducting polymers by using scanning electrochemical microscopy and electrochemical quartz crystal microbalance. Synth Met 152:133–136. doi: 10.1016/j.synthmet.2005.07.097 Google Scholar
  34. 34.
    Kwak J, Anson FC (1992) Monitoring the ejection and incorporation of ferricyanide [Fe(CN)63-] and ferrocyanide [Fe(CN)64-] counterions at protonated poly(4-vinylpyridine) coatings on electrodes with the scanning electrochemical microscope. Anal Chem 64:250–256. doi: 10.1021/ac00027a003 Google Scholar
  35. 35.
    Schmidt VM, Barbero C, Koetz R (1993) The ion exchange in polypyrrole in aqueous electrolytes. A probe beam deflection study of the effect of fixed negative charges. J Electroanal Chem 352:301–307. doi: 10.1016/0022-0728(93)80272-J Google Scholar
  36. 36.
    Arca M, Mirkin MV, Bard AJ (1995) Polymer films on electrodes. 26. Study of ion transport and electron transfer at polypyrrole films by scanning electrochemical microscopy. J Phys Chem 99:5040–5050. doi: 10.1021/j100014a026 Google Scholar
  37. 37.
    Barbero CA (2005) Ion exchange at the electrode/electrolyte interface studied by probe beam deflection techniques. Phys Chem Chem Phys 7:1885–1899. doi: 10.1039/b419382b Google Scholar
  38. 38.
    Troise Frank MH, Denuault G (1994) Relationship between proton concentration and electronic charge as a function of ionic-strength during the oxidation of polyaniline. J Electroanal Chem 379:399–406. doi: 10.1016/0022-0728(94)87163-9 Google Scholar
  39. 39.
    Carano M, Holt KB, Bard AJ (2003) Scanning electrochemical microscopy. 49. Gas-phase scanning electrochemical microscopy measurements with a clark oxygen ultramicroelectrode. Anal Chem 75:5071–5079. doi:  10.1021/ac034546q Google Scholar
  40. 40.
    Nugues S, Denuault G (1996) Scanning electrochemical microscopy: amperometric probing of diffusional ion fluxes through porous membranes and human dentine. J Electroanal Chem 408:125–140. doi: 10.1016/0022-0728(96)04523-8 Google Scholar
  41. 41.
    Etienne M, Schulte A, Mann S, Jordan G, Dietzel ID, Schuhmann W (2004) Constant-distance mode scanning potentiometry. 1. Visualization of calcium carbonate dissolution in aqueous solution. Anal Chem 76:3682–3688. doi: 10.1021/ac0349227 Google Scholar
  42. 42.
    Amatore C, Szunerits S, Thouin L (2000) Mapping concentration profiles within the diffusion layer of an electrode: Part II. Potentiometric measurements with an ultramicroelectrode. Electrochem Commun 2:248–253. doi: 10.1016/S1388-2481(00)00016-3 Google Scholar
  43. 43.
    Horrocks BR, Mirkin MV, Pierce DT, Bard AJ, Nagy G, Toth K (1993) Scanning electrochemical microscopy. 19. Ion-selective potentiometric microscopy. Anal Chem 65:1213–1224. doi: 10.1021/ac00057a019 Google Scholar
  44. 44.
    Comstock DJ, Elam JW, Pellin MJ, Hersam MC (2010) Integrated ultramicroelectrode − nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy. Anal Chem 82:1270–1276. doi: 10.1021/ac902224q Google Scholar
  45. 45.
    Chen C-C, Derylo MA, Baker LA (2009) Measurement of ion currents through porous membranes with scanning ion conductance microscopy. Anal Chem 81:4742–4751. doi: 10.1021/ac900065p Google Scholar
  46. 46.
    Tsionsky M, Bard AJ, Mirkin MV (1996) Scanning electrochemical microscopy. 34. Potential dependence of the electron-transfer rate and film formation at the liquid/liquid interface. J Phys Chem 100:17881–17888. doi: 10.1021/jp9612700 Google Scholar
  47. 47.
    Shimazu K, Murakoshi K, Kita H (1990) Quantitative and in-situ measurements of proton transport at polyaniline film electrodes. J Electroanal Chem 277:347–353. doi: 10.1016/0022-0728(90)85114-K Google Scholar
  48. 48.
    Martin MI, McHale NG, Melzak KA, Gizeli E (2004) Pulse mode shear horizontal-surface acoustic wave (SH-SAW) system for liquid based sensing applications. Biosens Bioelectron 19:627–632. doi: 10.1016/S0956-5663(03)00257-4 Google Scholar
  49. 49.
    Abruña HD (ed) (1991) Electrochemical interfaces: modern techniques for in-situ interface characterization. VCH, DeerfieldGoogle Scholar
  50. 50.
    Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys 155:206–209. doi: 10.1007/BF01337937 Google Scholar
  51. 51.
    Schumacher R (1990) The quartz microbalance: a novel approach to the in-situ investigation of interfacial phenomena at the solid/liquid junction. Angew Chem Int Ed Engl 29:329–343. doi: 10.1002/anie.199003293 Google Scholar
  52. 52.
    Buttry DA, Ward MD (1992) Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem Rev 92:1335–1379. doi: 10.1021/cr00014a006 Google Scholar
  53. 53.
    Oliveira RTS, Santos MC, Bulhões LOS, Pereira EC (2004) Rh electrodeposition on Pt in acidic medium: a study using cyclic voltammetry and an electrochemical quartz crystal microbalance. J Electroanal Chem 569:233–240. doi: 10.1016/j.jelechem.2004.03.006 Google Scholar
  54. 54.
    Inzelt G (1993) Oscillations of the EQCM frequency response in the course of open-circuit copper dissolution in aqueous solutions of H2SO4 and CuSO4. J Electroanal Chem 348:465–471. doi: 10.1016/0022-0728(93)80153-9 Google Scholar
  55. 55.
    Bruckenstein S, Shay M (1985) Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim Acta 30:1295–1300. doi: 10.1016/0013-4686(85)85005-2 DOI:dx.doi.orgGoogle Scholar
  56. 56.
    Jusys Z, Bruckenstein S (2000) Electrochemical quartz crystal microbalance study of perchlorate and perrhenate anion adsorption on polycrystalline gold electrode. Electrochem Commun 2:412–416. doi: 10.1016/S1388-2481(00)00044-8 Google Scholar
  57. 57.
    Uchida H, Ikeda N, Watanabe M (1997) Electrochemical quartz crystal microbalance study of copper adatoms on gold electrodes Part II. Further discussion on the specific adsorption of anions from solutions of perchloric and sulfuric acid. J Electroanal Chem 424:5–12. doi: 10.1016/S0022-0728(96)04924-8 Google Scholar
  58. 58.
    Lei H-W, Uchida H, Watanabe M (1996) Electrochemical quartz crystal microbalance study of adsorption of iodide on highly ordered Au(111). J Electroanal Chem 413:131–136. doi: 10.1016/0022-0728(96)04675-X Google Scholar
  59. 59.
    Deakin MR, Li TT, Melroy OR (1988) A study of the electrosorption of bromide and iodide ions on gold using the quartz crystal microbalance. J Electroanal Chem 243:343–351. doi: 10.1016/0022-0728(88)80039-1 Google Scholar
  60. 60.
    Shu ZX, Bruckenstein S (1991) Iodine adsorption studies at platinum. J Electroanal Chem 31:263–277. doi: 10.1016/0022-0728(91)85019-L Google Scholar
  61. 61.
    Bruckenstein S, Shay M (1985) An in situ weighing study of the mechanism for the formation of the adsorbed oxygen monolayer at a gold electrode. J Electroanal Chem 188:131–136. doi: 10.1016/S0022-0728(85)80057-7 Google Scholar
  62. 62.
    Shimazu K, Kita H (1992) In situ measurements of water adsorption on a platinum electrode by an electrochemical quartz crystal microbalance. J Electroanal Chem 341:361–367. doi: 10.1016/0022-0728(92)80494-O Google Scholar
  63. 63.
    Lori JA, Hanawa T (2001) Characterization of adsorption of glycine on gold and titanium electrodes using electrochemical quartz crystal microbalance. Corros Sci 43:2111–2120. doi: 10.1016/S0010-938X(01)00003-8 Google Scholar
  64. 64.
    Hepel M, Kanige K, Bruckenstein S (1989) In situ underpotential deposition study of lead on silver using the electrochemical quartz crystal microbalance: direct evidence for lead(II) adsorption before spontaneous charge transfer. J Electroanal Chem 266:409–421. doi: 10.1016/0022-0728(89)85085-5 Google Scholar
  65. 65.
    Chatenet M, Soldo-Olivier Y, Chainet E, Faure R (2007) Electrochemical quartz crystal microbalance determination of nickel formal partial charge number during nickel-underpotential deposition on platinum in sulphate media. Electrochem Commun 9:1463–1468. doi: 10.1016/j.elecom.2007.02.001 Google Scholar
  66. 66.
    Bruckenstein S, Wilde CP, Shay M, Hillman AR, Loveday DC (1989) Observation of kinetic effects during interfacial transfer at redox polymer films using the quartz crystal microbalance. J Electroanal Chem 258:457–462. doi: 10.1016/0022-0728(89)85128-9 Google Scholar
  67. 67.
    Bohnke O, Vuillemin B, Gabrielli C, Keddam M, Perrot H, Takenouti H, Torresi R (1995) An electrochemical quartz crystal microbalance study of lithium insertion into thin films of tungsten trioxide I. Modeling of the ionic insertion mechanism. Electrochim Acta 40:2755–2764. doi: 10.1016/0013-4686(95)00254-C Google Scholar
  68. 68.
    Kim K, Jureviciute I, Bruckenstein S (2001) Electrochemical quartz crystal microbalance studies of anion and pH effects on water fluxes accompanying redox switching of Prussian blue. Electrochim Acta 46:4133–4140. doi: 10.1016/S0013-4686(01)00707-1 Google Scholar
  69. 69.
    Hillman AR, Loveday DC, Bruckenstein S (1989) Thermodynamic changes in ion and solvent populations accompanying redox switching in polyvinylferrocene films. J Electroanal Chem 274:157–166. doi: 10.1016/0022-0728(89)87037-8 Google Scholar
  70. 70.
    Peres RCD, De Paoli M-A, Torresi RM (1992) The role of ion exchange in the redox processes of polypyrrole/dodecyl sulfate films as studied by electrogravimetry using a quartz crystal microbalance. Synth Met 48:259–270. doi: 10.1016/0379-6779(92)90229-C Google Scholar
  71. 71.
    Lim JY, Paik W-K, Yeo I-H (1995) A study of ion transports and growth of conducting polypyrrole with electrochemical quartz crystal microbalance. Synth Met 69:451–454. doi: 10.1016/0379-6779(94)02526-5 Google Scholar
  72. 72.
    Shimazu K, Yagi I, Sato Y, Uosaki K (1994) Electrochemical quartz crystal microbalance studies of self-assembled monolayers of 11-ferrocenyl-1-undecanethiol: structure-dependent ion-pairing and solvent uptake. J Electroanal Chem 372:117–124. doi: 10.1016/0022-0728(94)03296-3 DOI:dx.doi.orgGoogle Scholar
  73. 73.
    Barisci JN, Wallace GG, Baughman RH (2000) Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions. Electrochim Acta 46:509–517. doi: 10.1016/S0013-4686(00)00634-4 Google Scholar
  74. 74.
    Morallón E, Arias-Pardilla J, Calo JM, Cazorla-Amorós D (2009) Arsenic species interactions with a porous carbon electrode as determined with an electrochemical quartz crystal microbalance. Electrochim Acta 54:3996–4004. doi: 10.1016/j.electacta.2009.02.023 Google Scholar
  75. 75.
    Visscher W, Gootzen JFE, Cox AP, van Veen JAR (1997) Electrochemical quartz crystal microbalance measurements of CO adsorption and oxidation on Pt in various electrolytes. Electrochim Acta 43:533–547. doi: 10.1016/S0013-4686(97)00092-3 Google Scholar
  76. 76.
    Garcia G, Bruno MM, Planes GA, Rodriguez JL, Barbero CA, Pastor E (2008) Phys Chem Chem Phys 10:6677–6685. doi: 10.1039/B806938G Google Scholar
  77. 77.
    Liu C, Wang Y, Zhu G, Dong S (1997) Study of cupric hexacyanoferrate-modified platinum electrodes using probe beam deflection and electrochemical quartz crystal microbalance techniques. Electrochim Acta 42:1795–1800. doi: 10.1016/S0013-4686(96)00379-9 DOI:dx.doi.orgGoogle Scholar
  78. 78.
    French HM, Henderson MJ, Hillman AR, Vieil E (2001) Ion and solvent transfer discrimination at a nickel hydroxide film exposed to LiOH by combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD) techniques. J Electroanal Chem 500:192–207. doi: 10.1016/S0022-0728(00)00373-9 Google Scholar
  79. 79.
    Orata D, Buttry DA (1987) Determination of ion populations and solvent content as functions of redox state and pH in polyaniline. J Am Chem Soc 109:3574–3581. doi: 10.1021/ja00246a013 Google Scholar
  80. 80.
    Miras MC, Barbero C, Koetz R, Haas O (1994) Electrochemical quartz crystal microbalance investigation of the ion exchange mechanism in the first oxidation step of polyaniline in HClO4. J Electroanal Chem 369:193–197. doi: 10.1016/0022-0728(94)87098-5 Google Scholar
  81. 81.
    Torresi RM, Cordoba de Torresi SI, Gabrielli C, Keddam M, Takenouti H (1993) Quartz crystal microbalance characterization of electrochemical doping of polyaniline films. Synth Met 61:291–296. doi: 10.1016/0379-6779(93)91275-7 Google Scholar
  82. 82.
    Miras MC, Barbero C, Koetz R, Haas O, Schmidt VM (1992) Quartz crystal microbalance and probe beam deflection studies of poly(1-hydroxyphenazine) modified electrodes. J Electroanal Chem 338:279–297. doi: 10.1016/0022-0728(92)80429-8 Google Scholar
  83. 83.
    Barbero C, Miras MC, Haas O, Kötz R (1993) Comparative study of the ion exchange and electrochemical properties of sulfonated polyaniline (SPAN) and polyaniline (PANI). Synth Met 55–57:1539–1544. doi: 10.1016/0379-6779(93)90281-Z Google Scholar
  84. 84.
    Barbero C, Miras MC, Kötz R (1997) Sulphonated polyaniline (SPAN) films as cation insertion electrodes battery applications Part II: Exchange of mobile species in aqueous and non-aqueous solutions. J Electroanal Chem 437:191–198. doi: 10.1016/S0022-0728(97)00357-4 Google Scholar
  85. 85.
    Mello Q, Torresi RM, Cordoba de Torresi SI, Ticianelli EA (2000) Ellipsometric, electrogravimetric, and spectroelectrochemical studies of the redox process of sulfonated polyaniline. Langmuir 16:7835–7841. doi: 10.1021/la000391v Google Scholar
  86. 86.
    Grumelli DE, Forzani ES, Morales GM, Miras MC, Barbero CA, Calvo EJ (2004) Microgravimetric study of electrochemically controlled nucleophilic addition of sulfite to polyaniline. Langmuir 20:2349–2355. doi: 10.1021/la0354990 Google Scholar
  87. 87.
    Inzelt G, Kertesz V (1997) Effect of poly(aniline) pseudocapacitance on potential and EQCM frequency oscillations arising in the course of galvanostatic oxidation of formic acid on platinum. Electrochim Acta 42:229–235. doi: 10.1016/0013-4686(96)00148-X Google Scholar
  88. 88.
    Kertesz V, Inzelt G, Barbero C, Koetz R, Haas O (1995) Probe beam deflection studies of electrochemical oscillations during galvanostatic oxidation of formic acid at a platinum electrode. J Electroanal Chem 392:91–95. doi: 10.1016/0022-0728(95)04085-3 Google Scholar
  89. 89.
    Omura J, Yano H, Watanabe M, Uchida H (2011) Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 1: Effect of adsorbed anions on the oxygen reduction activities of Pt in HF, HClO4, and H2SO4 solutions. Langmuir 27:6464–6470. doi:  10.1021/la200694a Google Scholar
  90. 90.
    Ivanchenko MI, Kobayashi H, Kulik EA, Dobrova NB (1995) Studies on polymer solutions, gels and grafted layers using the quartz crystal microbalance technique. Anal Chim Acta 314:23–31. doi: 10.1016/0003-2670(95)00262-X Google Scholar
  91. 91.
    Barbero C, Calvo EJ, Etchenique R, Morales GM, Otero M (2000) An EQCM electroacoustic study of poly(vinylferrocene) modified electrodes in different aqueous electrolytes. Electrochim Acta 45:3895–3906. doi: 10.1016/S0013-4686(00)00452-7 Google Scholar
  92. 92.
    Gale RJ (1988) Spectroelectrochemistry: theory and practice. Plenum, New YorkGoogle Scholar
  93. 93.
    Planes GA, Moran E, Rodriguez JL, Barbero C, Pastor E (2003) Electrochemical behavior of benzaldehyde on polycrystalline platinum. An in situ FTIR and DEMS study. Langmuir 19:8899–8906. doi: 10.1021/la034627h Google Scholar
  94. 94.
    Rajeshwahr K, Lezna RO, de Tacconi NR (1992) Light in an electrochemical tunnel? Solving analytical problems in electrochemistry via spectroscopy. Anal Chem 64:429A–441A. doi: 10.1021/ac00031a001 Google Scholar
  95. 95.
    Lapkowski M, Genies EM (1990) Spectroelectrochemical studies of proton exchange processes in the electrochemical reactions of polyaniline using pH indicators. J Electroanal Chem 284:127–140. doi: 10.1016/0022-0728(90)87067-T Google Scholar
  96. 96.
    Nath A, Kanungo M, Contractor AQ (2003) In situ measurement of pH in the interior of conducting polymer microtubules. J Electroanal Chem 557:119–125. doi: 10.1016/S0022-0728(03)00354-1 DOI:dx.doi.orgGoogle Scholar
  97. 97.
    Engstrom RC, Ghaffari S, Qu H (1992) Fluorescence imaging of electrode-solution interfacial processes. Anal Chem 64:2525–2529. doi: 10.1021/ac00045a012 Google Scholar
  98. 98.
    Vitt JE, Engstrom RC (1997) Imaging of oxygen evolution and oxide formation using quinine fluorescence. Anal Chem 69:1070–1076. doi: 10.1021/ac960816b Google Scholar
  99. 99.
    Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalyst. Science 280:1735–1737. doi: 10.1126/science.280.5370.1735 Google Scholar
  100. 100.
    Cannan S, Macklam ID, Unwin PR (2002) Three-dimensional imaging of proton gradients at microelectrode surfaces using confocal laser scanning microscopy. Electrochem Commun 4:886–892. doi: 10.1016/S1388-2481(02)00482-4 DOI:dx.doi.orgGoogle Scholar
  101. 101.
    Posdorfer J, Olbrich-Stock M, Schindler RN (1994) Spatially resolved UV–VIS absorption measurements in planar, cylindrical and spherical diffusion layers. Kinetic investigations of a heterogeneous electron transfer reaction Electrochim Acta 39:2005–2013. doi: 10.1016/0013-4686(94)85081-X Google Scholar
  102. 102.
    McCreery RL (1988) Electronic and vibrational spectroscopy of electrode surfaces. Prog Anal Spectrosc 11:141–178Google Scholar
  103. 103.
    Jan CC, McCreery RL, Gamble T (1985) Diffusion layer imaging: spatial resolution of electrochemical concentration profiles. Anal Chem 57:1763–1765. doi: 10.1021/ac00285a059 Google Scholar
  104. 104.
    Rossi P, McCurdy CW, McCreery RL (1981) Diffractive spectroelectrochemistry. Use of diffracted light for monitoring electrogenerated chromophores. J Am Chem Soc 103:2524–2529. doi: 10.1021/ja00400a006 Google Scholar
  105. 105.
    Jan CC, McCreery RL (1986) High-resolution spatially resolved visible absorption spectrometry of the electrochemical diffusion layer. Anal Chem 58:2771–2777. doi: 10.1021/ac00126a041 Google Scholar
  106. 106.
    Jan CC, Lavine BK, McCreery RL (1985) High-sensitivity spectroelectrochemistry based on electrochemical modulation of an absorbing analyte. Anal Chem 57:752–758. doi: 10.1021/ac00280a040 Google Scholar
  107. 107.
    Korzeniewski C (2002) Infrared spectroelectrochemistry. In: Griffiths PM, Chalmers JM (eds) Handbook of vibrational spectroscopy. Wiley, New YorkGoogle Scholar
  108. 108.
    Korzeniewski C (1999) Vibrational coupling effects on infrared spectra of adsorbates on electrodes. In: Wieckowski A (ed) Interfacial electrochemistry. Marcel Dekker, New YorkGoogle Scholar
  109. 109.
    Garcia G, Rodriguez JL, Lacconi GI, Pastor E (2006) Adsorption and oxidation pathways of thiourea at polycrystalline platinum electrodes. J Electroanal Chem 588:169–178. doi: 10.1016/j.jelechem.2005.12.012 Google Scholar
  110. 110.
    Planes GA, Rodríguez JL, Miras MC, García G, Pastor E, Barbero C (2010) Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation. Phys Chem Chem Phys 12:10584–10593. doi: 10.1039/C002920C Google Scholar
  111. 111.
    Martinez Y, Hernandez R, Kalaji M, Marquez OM, Marquez J (2004) SNIFTIRS studies of the electrochemical oxidation of 1,3-dimethoxybenzene on platinum in acetonitrile/tetrabutilammonium electrolytes. J Electroanal Chem 563:145–152. doi: 10.1016/j.jelechem.2003.09.001 Google Scholar
  112. 112.
    Salimon J, Hernandez-Romero RM, Kalaji M (2002) The dynamics of the conversion of linear to bridge bonded CO on Cu. J Electroanal Chem 538–539:99–108. doi: 10.1016/S0022-0728(02)01052-5 Google Scholar
  113. 113.
    Urban MW (1996) Attenuated total reflectance spectroscopy of polymers: theory and practice. American Chemical Society, WashingtonGoogle Scholar
  114. 114.
    Fringeli UP (1999) ATR and reflectance IR spectroscopy, applications. In: Lindon J (ed) Encyclopedia of spectroscopy and spectrometry. Academic, Oxford. ISBN:  10.1016/B978-0-12-374413-5.00104-4
  115. 115.
    Ping Z, Nauer GE (1996) In situ FTIR-ATR spectroscopic investigations on the polymerization process and the redox behavior of poly( thienylpyrrole) thin film electrodes in aqueous and non-aqueous solutions. Part 1. Characterization of the polymerization process in acetonitrile containing different supporting salts. J Electroanal Chem 416:157–166. doi: 10.1016/S0022-0728(96)04723-7 Google Scholar
  116. 116.
    Zippel E, Kellner R, Krebs M, Breiter W (1992) ATR-IR studies of CO adsorption from solutions. J Electroanal Chem 330:521–527. doi: 10.1016/0022-0728(92)80328-2 Google Scholar
  117. 117.
    Heinen M, Chen YX, Jusys Z, Behm RJ (2007) CO adsorption kinetics and adlayer build-up studied by combined ATR-FTIR spectroscopy and on-line DEMS under continuous flow conditions. Electrochim Acta 53:1279–1289. doi: 10.1016/j.electacta.2007.05.020 Google Scholar
  118. 118.
    Webster RD (2003) In situ electrochemical-ATR-FTIR spectroscopic studies on solution phase 2,4,6-tri-substituted phenoxyl radicals. Electrochem Commun 5:6–11. doi: 10.1016/S1388-2481(02)00517-9 Google Scholar
  119. 119.
    Hatta A, Sasaki Y, Suutaka W (1986) Polarization modulation infrared spectroscopic measurements of thiocyanate and cyanide at the silver electrode/aqueous electrolyte interface by means of Kretschmann’s ATR prism configuration. J Electroanal Chem 215:93–102. doi: 10.1016/0022-0728(86)87007-3 Google Scholar
  120. 120.
    Chen S, Peng HM, Webster RD (2010) Infrared and UV-vis spectra of phenoxonium cations produced during the oxidation of phenols with structures similar to vitamin E. Electrochim Acta 55:8863–8869. doi: 10.1016/j.electacta.2010.07.096 Google Scholar
  121. 121.
    Zhu Y, Uchida H, Yajima T, Watanabe M (2001) Attenuated total reflection − Fourier transform infrared study of methanol oxidation on sputtered Pt film electrode. Langmuir 17:146–154. doi: 10.1021/la000457m Google Scholar
  122. 122.
    Shao MH, Warren J, Marinkovic NS, Faguy PW, Adzic RR (2005) In situ ATR-SEIRAS study of electrooxidation of dimethyl ether on a Pt electrode in acid solutions. Electrochem Commun 7:459–465. doi: 10.1016/j.elecom.2005.02.024 Google Scholar
  123. 123.
    Boscheto E, Batista BC, Lima RB, Varela H (2010) A surface-enhanced infrared absorption spectroscopic (SEIRAS) study of the oscillatory electro-oxidation of methanol on platinum. J Electroanal Chem 642:17–21. doi: 10.1016/j.jelechem.2010.01.026 Google Scholar
  124. 124.
    Ping Z, Nauer GE (1997) In situ FTIR-ATR spectroscopic investigations on the redox behavior of poly(thienylpyrrole) thin film electrodes in non-aqueous solutions. Synth Met 84:843–844. doi: 10.1016/S0379-6779(96)04175-6 Google Scholar
  125. 125.
    Ping Z, Neugebauer H, Neckel A (1996) FTIR ATR spectroelectrochemical investigations of polyaniline with perrhenate as a new doping system. Electrochim Acta 41:767–772. doi: 10.1016/0013-4686(95)00365-7 Google Scholar
  126. 126.
    Kuzmany H, Sariciftci HS, Neugebauer H, Neckel A (1988) Evidence for two separate doping mechanisms in the polyaniline system. Phys Rev Lett 60:212–215. doi: 10.1103/PhysRevLett.60.212 Google Scholar
  127. 127.
    Ping Z, Neugebauer H, Neckel A (1995) The determination of the anion content in polyaniline as a function of the pH value and the electrode potential: an in situ FTIR spectroscopic study. Synth Met 69:161–162. doi: 10.1016/0379-6779(94)02403-0 Google Scholar
  128. 128.
    Kvarnstrom C, Neugebauer H, Ivaska A, Sariciftci NS (2000) Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) study. J Mol Struct 521:271–277. doi: 10.1016/S0022-2860(99)00442-1 Google Scholar
  129. 129.
    Barbero C, Miras MC, Haas O, Kötz R (1991) Direct in situ evidence for proton/anion exchange in polyaniline films by means of probe beam deflection. J Electrochem Soc 138:669–672. doi: 10.1149/1.2085655 Google Scholar
  130. 130.
    Pham M-C, Moslih J, Barbero C, Haas O (1991) Influence of the cation size on the charge compensation process in poly(1-naphthol) coated electrodes: multiple internal reflection FTIR spectroscopy (MIRFTIRS) and probe beam deflection (PBD) study. J Electroanal Chem 316:143–154. doi: 10.1016/0022-0728(91)87042-3 DOI:dx.doi.orgGoogle Scholar
  131. 131.
    Barbero C, Haas O, Mostefai M, Pham MC (1995) Ion exchange in poly(5-amino-1-naphthol) probe beam deflection and multiple internal reflection Fourier transform infrared spectroscopic studies. J Electrochem Soc 142:1829–1834. doi: 10.1149/1.2044201 Google Scholar
  132. 132.
    Piro B, Bazzaoui EA, Pham MC, Novak P, Haas O (1999) Multiple internal reflection FTIR spectroscopic (MIRFTIRS) study of the redox process of poly(5-amino-1,4-naphthoquinone) film in aqueous and organic media. Electrochim Acta 44:1953–1961. doi: 10.1016/S0013-4686(98)00304-1 Google Scholar
  133. 133.
    Tugas I, Lambert JM, Maillols J, Bribes JL, Pourcelly G, Gavach C (1993) Identification of the ionic species in anion exchange membranes equilibrated with sulphuric acid solutions by means of Raman spectroscopy and radiotracers. J Membr Sci 78:25–33. doi: 10.1016/0376-7388(93)85244-Q Google Scholar
  134. 134.
    Thibault C, Huguet P, Sistat P, Pourcelly G (2002) Confocal Raman micro-spectroscopy and electrochemical investigation of anion transport through ion-exchange membranes. Desalination 149:429–433. doi: 10.1016/S0011-9164(02)00770-1 Google Scholar
  135. 135.
    Lopez-Garcia U, Antano-Lopez R, Orozco G, Chapman T, Castaneda F (2009) Characterization of electrodialysis membranes by electrochemical impedance spectroscopy at low polarization and by Raman spectroscopy. Sep Purif Technol 68:375–381. doi: 10.1016/j.seppur.2009.06.012 Google Scholar
  136. 136.
    Deabate S, Fatnassi R, Sistat P, Huguet P (2008) In situ confocal-Raman measurement of water and methanol concentration profiles in Nafion(R) membrane under cross-transport conditions. J Power Sources 176:39–45. doi: 10.1016/j.jpowsour.2007.10.044 Google Scholar
  137. 137.
    Amatore C, Bonhomme F, Bruneel J-L, Servant L, Thouin L (2000) Mapping concentration profiles within the diffusion layer of an electrode: Part I. Confocal resonance Raman microscopy. Electrochem Commun 2:235–239. doi: 10.1016/S1388-2481(00)00015-1 Google Scholar
  138. 138.
    Horanyi G (2004) Studies of electrified solid/liquid interfaces. In: Horanyi G (ed) Radiotracer studies of interfaces. Elsevier, AmsterdamGoogle Scholar
  139. 139.
    Horanyi G, Rizmayer EM, Inzelt G (1978) Radiotracer study of the adsorption of phosphoric acid on platinized platinum electrodes in the presence of different ions and oxalic acid. J Electroanal Chem 93:183–194. doi: 10.1016/S0022-0728(78)80214-9 Google Scholar
  140. 140.
    Lukomska A, Sobkowski J (2005) Adsorption of urea on a polycrystalline silver electrode; comparison of electrochemical and radiometric methods. J Solid State Electrochem 9:277–283. doi: 10.1007/s10008-004-0603-0 Google Scholar
  141. 141.
    Horanyi G, Inzelt G, Kulesza PJ (1990) Radiotracer study of metal hexacyanometalate films. Sorption of Ca2+ ions into cupric hexacyanoferrate films. Electrochim Acta 35:811–816. doi: 10.1016/0013-4686(90)90073-9 Google Scholar
  142. 142.
    Inzelt G, Horanyi G, Chambers JQ, Day EW (1987) Combined electrochemical and radiotracer (cyclic voltradiometric) study of the motion of counter-ions in tetracyanoquinodimethane modified electrodes. J Electroanal Chem 218:297–306. doi: 10.1016/0022-0728(87)87024-9 Google Scholar
  143. 143.
    Inzelt G, Horányi G (1989) Combined electrochemical and radiotracer study on the ionic charge transport coupled to electron transfer and ionic equilibria in electroactive polymer films on electrodes. J Electrochem Soc 136:1747–1752. doi: 10.1149/1.2097004 Google Scholar
  144. 144.
    Horanyi G, Inzelt G (1988) Anion-involvement in electrochemical transformations of polyaniline. A radiotracer study. Electrochim Acta 33:947–952. doi: 10.1016/0013-4686(88)80093-8 Google Scholar
  145. 145.
    Csahok E, Vieil E, Inzelt G (1998) Probe beam deflection study of the transport of ions during the redox reaction of indium-hexacyanoferrate films. J Electroanal Chem 457:251–255. doi: 10.1016/S0022-0728(98)00290-3 Google Scholar
  146. 146.
    Inzelt G, Horanyi G, Chambers JQ (1987) Radiotracer study of the sorption of counter- and co-ions in tetracyanoquinodimethane and poly(vinyl ferrocene) modified electrodes. Electrochim Acta 32:757–763. doi: 10.1016/0013-4686(87)85106-X Google Scholar
  147. 147.
    Barbero C, Calvo EJ, Miras MC, Koetz R, Haas O (2002) A probe beam deflection study of ion exchange at poly(vinylferrocene) films in aqueous and nonaqueous electrolytes. Langmuir 18:2756–2764. doi: 10.1021/la010999j Google Scholar
  148. 148.
    Jureviciute I, Bruckenstein S, Hillman AR (2006) Cation participation during the redox switching of poly(vinylferrocene) films in aqueous 0.05 M perchlorate solutions. Part 1: Cyclic voltammetry and the EQCM. Electrochim Acta 51:2351–2357. doi: 10.1016/j.electacta.2005.02.155 Google Scholar
  149. 149.
    Wasberg M, Bacskai J, Inzelt G, Horanyi G (1996) The harmony of EQCM and radiotracer sorption results obtained in the course of voltammetric study of a rhodized electrode. J Electroanal Chem 418:195–198. doi: 10.1016/S0022-0728(96)04854-1 Google Scholar
  150. 150.
    Malik MA, Horanyi G, Kulesza PJ, Inzelt G, Kertesz V, Schmidt R, Czirok E (1998) Microgravimetric monitoring of transport of cations during redox reactions of indium(III) hexacyanoferrate(III, II): radiotracer evidence for the flux of anions in the film. J Electroanal Chem 452:57–62. doi: 10.1016/S0022-0728(98)00095-3 Google Scholar
  151. 151.
    Horanyi G, Wasberg M (1996) Comparative radiotracer study of the adsorption of Cl-, HSO4- and H2PO4- anions on rhodized electrodes. J Electroanal Chem 404:291–298. doi: 10.1016/0022-0728(95)04353-5 Google Scholar
  152. 152.
    Bidoia ED, McLarnon FR, Cairns EJ (2000) Investigation of anion adsorption on platinum electrodes in aqueous media by probe beam deflection. J Electroanal Chem 482:75–80. doi: 10.1016/S0022-0728(00)00003-6 Google Scholar
  153. 153.
    García G, Bruno MM, Planes GA, Rodriguez JL, Barbero CA, Pastor E (2008) Probe beam deflection studies of nanostructured catalyst materials for fuel cells. Phys Chem Chem Phys 10:6677–6685. doi: 10.1039/B806938G Google Scholar
  154. 154.
    Inzelt G, Horanyi G (1987) Combined electrochemical and radiotracer study of anion sorption from aqueous solutions into polypyrrole films. J Electroanal Chem 230:257–265. doi: 10.1016/0022-0728(87)80147-X Google Scholar
  155. 155.
    Dong H, Cao X, Li CM, Hu W (2008) An in situ electrochemical surface plasmon resonance immunosensor with polypyrrole propylic acid film: comparison between SPR and electrochemical responses from polymer formation to protein immunosensing. Biosens Bioelectron 23:1055–1062. doi: 10.1016/j.bios.2007.10.026 Google Scholar
  156. 156.
    Wang S, Huang X, Shan X, Foley KJ, Tao N (2010) Electrochemical surface plasmon resonance: basic formalism and experimental validation. Anal Chem 82:935–941. doi: 10.1021/ac902178f Google Scholar
  157. 157.
    Andersson O, Ulrich C, Björefors F, Liedberg B (2008) Imaging SPR for detection of local electrochemical processes on patterned surfaces. Sens Actuators B Chem 134:545–550. doi: 10.1016/j.snb.2008.05.042 Google Scholar
  158. 158.
    Iwasaki Y, Horiuchi T, Morita M, Niwa O (1999) Electrochemical reaction of Fe(CN)3−/4 − 6 on gold electrodes analyzed by surface plasmon resonance. Surf Sci 427–428:195–198. doi: 10.1016/S0039-6028(99)00264-2 DOI:dx.doi.orgGoogle Scholar
  159. 159.
    Rudnicki JD, McLarnon FR, Cairns EJ (1991) In situ characterization of electrode processes by photothermal deflection spectroscopy. In: Varma R, Selman JR (eds) Techniques for characterization of electrodes and electrochemical processes. Plenum, New YorkGoogle Scholar
  160. 160.
    Garay F, Barbero CA (2006) Charge neutralization process of mobile species at any distance from the electrode/solution interface. 1. Theory and simulation of concentration and concentration gradients developed during potentiostatic conditions. Anal Chem 78:6733–6739. doi: 10.1021/ac0603678 Google Scholar
  161. 161.
    Garay F, Barbero CA (2008) Charge neutralization process of mobile species developed during potentiodynamic conditions. Part 1: Theory. J Electroanal Chem 624:218–227. doi: 10.1016/j.jelechem.2008.09.010 Google Scholar
  162. 162.
    Baba A, Tian S, Stefani F, Xia C, WangZ ARC, Johannsmann D, Knoll W (2004) Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance. J Electroanal Chem 562:95–103. doi: 10.1016/j.jelechem.2003.08.012 Google Scholar
  163. 163.
    Wang Y, Knoll W (2006) In situ electrochemical and surface plasmon resonance (SPR) studies of aniline-carboxylated aniline copolymers. Anal Chim Acta 558:150–157. doi: 10.1016/j.aca.2005.11.006 Google Scholar
  164. 164.
    Salavagione HJ, Acevedo DF, Miras MC, Barbero C (2003) Redox coupled ion exchange in copolymers of aniline with aminobenzoic acids. Port Electrochim Acta 21:245–254Google Scholar
  165. 165.
    McLarnon FR, Muller RH, Tobias CW (1976) Interferometric study of transient diffusion layers. Electrochim Acta 21:101–105. doi: 10.1016/0013-4686(76)85045-1 Google Scholar
  166. 166.
    Forgacs C, Leibovitz J, O’Brien RN, Spiegler KS (1975) Interferometric study of concentration profiles in solutions near membrane surfaces. Electrochim Acta 20:555–563. doi: 10.1016/0013-4686(75)80006-5 Google Scholar
  167. 167.
    O’Brien RN, Michalik W, Visaisouk S (1986) A laser interferometric study of chlorine evolution from concentrated NaCl solutions. Electrochim Acta 31:1675–1677. doi: 10.1016/0013-4686(86)87093-1 Google Scholar
  168. 168.
    Mueller RH (1973) Optical techniques in electrochemistry. In: Advances in electrochemistry and electrochemical engineering. Wiley, New YorkGoogle Scholar
  169. 169.
    Shaposhnik VA, Vasil’eva VI, Praslov DB (1995) Concentration fields of solutions under electrodialysis with ion-exchange membranes. J Membr Sci 101:23–30. doi: 10.1016/0376-7388(94)00270-9 Google Scholar
  170. 170.
    Eriksson R (1996) A study of the PBD-technique using the copper refining cell as a model system. Electrochim Acta 41:871–887. doi: 10.1016/0013-4686(95)00384-3 Google Scholar
  171. 171.
    Eriksson R (1995) Experimental determinations of concentration fields in the copper and silver refining systems using probe-beam deflection. Electrochim Acta 40:725–773. doi: 10.1016/0013-4686(94)00334-W Google Scholar
  172. 172.
    Kragt HJ, Smith CP, White HS (1990) Refractive index mapping of concentration profiles. J Electroanal Chem 378:403–407. doi: 10.1016/0022-0728(90)85152-U Google Scholar
  173. 173.
    Fantini J, Fournier D, Boccara AC, Plichon V (1997) Microflux detection at the solid-liquid interface with an interferometric microscope. Electrochim Acta 42:937–944. doi: 10.1016/S0013-4686(96)00259-9 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Inst. ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Chemistry DepartmentUniversidad Nacional de Rio CuartoRio Cuarto CórdobaArgentina

Personalised recommendations