In Situ Electrochemical Photothermal Deflection Techniques

Chapter
Part of the Monographs in Electrochemistry book series (MOEC)

Abstract

The theory of photothermal deflection spectroscopy (PDS) applied in situ to electrochemical systems is outlined. The predicted response to different forms of light excitation is described. Then, the experimental parameters relevant to the measurement of photothermal deflection signal in an electrochemical environment are discussed, along with the description of an actual photothermal deflection setup. Finally, experimental results of in situ electrochemical PDS and single wavelength photothermal deflection measurements are described. The techniques are compared with conventional optical absorption techniques such as transmission and reflectance spectroscopy.

Keywords

Thermal Gradient Probe Beam Pump Beam Tungsten Oxide Refractive Index Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mendoza-Alvarez JG, Royce BSH, Sanchez-Sinencio F, Zelaya-Angel O, Menezes C, Triboulet R (1983) Optical properties of CdTe thin films studied by photothermal deflection spectroscopy. Thin Solid Films 102:259–263. doi: 10.1016/0040-6090(83)90093-7 CrossRefGoogle Scholar
  2. 2.
    Li B, Deng Y, Cheng J (1995) Pulsed photothermal deflection spectroscopy with optically dense samples. Appl Spectrosc 49:279–285. doi: as-49-3-279 CrossRefGoogle Scholar
  3. 3.
    Seager CH, Sinclair M, McBranch D, Heeger AJ, Baker GL (1992) Synth Met 49:91–97. doi: 10.1016/0379-6779(92)90077-V CrossRefGoogle Scholar
  4. 4.
    Decker F, Fracastoro-Decker M (1988) The mirage effect in photoelectrochemistry. J Electroanal Chem 243:187–191. doi: 10.1016/0022-0728(88)85038-1 CrossRefGoogle Scholar
  5. 5.
    Bird RB, Stewart WE, Lightfoot EN (2001) Transport phenomena. Wiley, New YorkGoogle Scholar
  6. 6.
    Fracastoro-Decker M, Decker F (1989) The mirage effect under controlled current conditions. J Electroanal Chem 266:215–225. doi: 10.1016/0022-0728(89)85069-7 CrossRefGoogle Scholar
  7. 7.
    Brilmyer GH, Bard AJ (1980) Application of photothermal spectroscopy to in-situ studies of films on metals and electrodes. Anal Chem 52:685–691. doi: 10.1021/ac50054a023 CrossRefGoogle Scholar
  8. 8.
    Harada M, Obata S, Kitamori T, Sawada T (1993) Anal Chem 65:2181–2183. doi: 10.1021/ac00063a046 CrossRefGoogle Scholar
  9. 9.
    Braslavsky S, Heihoff K (1991) Photothernal methods. In: Scaiano JC (ed) CRC handbook of organic photochemistry. CRC, Boca Raton, FLGoogle Scholar
  10. 10.
    CRC (1978) CRC handbook of chemistry and physics, 68th edn. CRC, New YorkGoogle Scholar
  11. 11.
    Bialkowski SE (1996) Photothermal spectroscopy methods for chemical analysis. Wiley, New YorkCrossRefGoogle Scholar
  12. 12.
    Barbero C, Kőtz R, Haas O (1999) Differential photothermal deflection spectroscopy (dpds). A technique to study electrochromism of synthetic metals. Synth Met 101:170. doi: 10.1016/S0379-6779(98)00766-8 DOI:dx.doi.orgCrossRefGoogle Scholar
  13. 13.
    Bruining H (1954) Physics and applications of secondary electron emission. McGraw-Hill, New YorkGoogle Scholar
  14. 14.
    Robinson RA, Stokes RH (2002) Electrolyte solution. Courier Dover Publications, LondresGoogle Scholar
  15. 15.
    Pawliszyn J, Weber MF, Dignam MJ, Venter RD, Moon Park S (1986) Observation of concentration gradients by the laser beam deflection sensor. Anal Chem 58:236–239. doi: 10.1021/ac00292a058 CrossRefGoogle Scholar
  16. 16.
    Pawliszyn J, Weber MF, Dignam MJ, Moon Park S (1986) Selective observation of concentration gradients by the laser beam deflection sensor applied to in situ electrochemical studies. A novel approach. Anal Chem 58:239–242. doi: 10.1021/ac00292a059 CrossRefGoogle Scholar
  17. 17.
    Pawliszyn J (1988) Spectroelectrochemical sensor based on Schlieren optics. Anal Chem 60:1751–1758. doi: 10.1021/ac00168a022 CrossRefGoogle Scholar
  18. 18.
    Royce BSH, Sánchez-Sinencio F, Goldstein R, Muratore R, Williams R, Yim WM (1982) Studies of photocorrosion at the ZnSe-electrolyte interface by photothermal deflection spectroscopy. J Electrochem Soc 129:2393–2395. doi: 10.1149/1.2123551 CrossRefGoogle Scholar
  19. 19.
    Royce BSH, Voss D, Bocarsly A (1983) Mirage effect of electrochemical processes. J de Physique 44:325–329Google Scholar
  20. 20.
    Russo RE, McLarnon FR, Spear JD, Cairns EJ (1987) Probe beam deflection for in situ measurements of concentration and spectroscopic behavior during copper oxidation and reduction. J Electrochem Soc 134:2783–2787. doi: 10.1149/1.2100287 CrossRefGoogle Scholar
  21. 21.
    Rudnicki JD, Russo RE, Shoesmith DW (1994) Photothermal deflection spectroscopy investigations of uranium dioxide oxidation. J Electroanal Chem 372:63–74. doi: 10.1016/0022-0728(94)03301-3 CrossRefGoogle Scholar
  22. 22.
    Deb SK (1973) Optical and photoelectric properties and color centers in thin films of tungsten(VI) oxide. Philos Mag 27(4):801–822CrossRefGoogle Scholar
  23. 23.
    Malpas RE, Bard AJ (1980) In situ monitoring of electrochromic systems by piezoelectric detector photoacoustic spectroscopy of electrodes. Anal Chem 52(1):109–112. doi: 10.1021/ac50051a026 CrossRefGoogle Scholar
  24. 24.
    Leftheriotis G, Yianoulis P (2008) Development of electrodeposited WO3 films with modified surface morphology and improved electrochromic properties. Solid State Ionics 179:2192–2197. doi: 10.1016/j.ssi.2008.07.018 CrossRefGoogle Scholar
  25. 25.
    Kotz R, Barbero C, Haas O (1990) Probe beam deflection investigation of the charge storage reaction in anodic iridium and tungsten oxide films. J Electroanal Chem 296:37–49. doi: 10.1016/0022-0728(90)87231-8 CrossRefGoogle Scholar
  26. 26.
    Kang KS, Shay JL (1983) Blue sputtered iridium oxide films (blue SIROF’s). J Electrochem Soc 130:766–769. doi: 10.1149/1.2119800 CrossRefGoogle Scholar
  27. 27.
    Gutiérrez C, Sánchez M, Peña JI, Martínez C, Martínez MA (1987) Potential-modulated reflectance study of the oxidation state of iridium in anodic iridium oxide films. J Electrochem Soc 134:2119–2125. doi: 10.1149/1.2100835 CrossRefGoogle Scholar
  28. 28.
    Koetz ER, Neff H (1985) Anodic iridium oxide films: an UPS study of emersed electrodes. Surf Sci 160:517–530. doi: 10.1016/0039-6028(85)90791-5 CrossRefGoogle Scholar
  29. 29.
    Hyodo K (1994) Electrochromism of conducting polymers. Electrochim Acta 39:265–272. doi: 10.1016/0013-4686(94)80062-6 CrossRefGoogle Scholar
  30. 30.
    Monk P, Mortimer R, Rosseinsky D (2007) Electrochromism and electrochromic devices. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. 31.
    Weinberger BR, Roxlo CB, Etemad S, Baker GL, Orenstein J (1984) Optical absorption in polyacetylene: a direct measurement using photothermal deflection spectroscopy. Phys Rev Lett 53:86–89. doi: 10.1103/PhysRevLett.53.86 CrossRefGoogle Scholar
  32. 32.
    Tzolov M, Koch VP, Bruetting W, Schwoerer M (2000) Optical characterization of chemically doped thin films of poly(p-phenylene vinylene). Synth Met 109:85–89. doi: 10.1016/S0379-6779(99)00207-6 CrossRefGoogle Scholar
  33. 33.
    Huang WS, MacDiarmid AG (1993) Optical properties of polyaniline. Polymer 34:1833–1845. doi: 10.1016/0032-3861(93)90424-9 CrossRefGoogle Scholar
  34. 34.
    Grumelli DE, Forzani ES, Morales GM, Miras MC, Barbero CA, Calvo EJ (2004) Microgravimetric study of electrochemically controlled nucleophilic addition of sulfite to polyaniline. Langmuir 20:2349–2355. doi: 10.1021/la0354990 CrossRefGoogle Scholar
  35. 35.
    Stilwell DE, Park SM (1989) Electrochemistry of conductive polymers. J Electrochem Soc 136:427–433. doi: 10.1149/1.2096649 CrossRefGoogle Scholar
  36. 36.
    Barbero C, Miras MC, Schnyder B, Haas O, Kötz R (1994) Sulfonated polyaniline films as cation insertion electrodes for battery applications. Part 1.—Structural and electrochemical characterization. J Mater Chem 4:1775–1783. doi: 10.1039/JM9940401775 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Inst. ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Chemistry DepartmentUniversidad Nacional de Rio CuartoRio Cuarto CórdobaArgentina

Personalised recommendations