Aha, D.W., Molineaux, M., Ponsen, M.: Learning to win: Case-based plan selection in a real-time strategy game. Case-Based Reasoning Research and Development, 5–20 (2005)
Google Scholar
Amit, A., Markovitch, S.: Learning to bid in bridge. Machine Learning 63(3), 287–327 (2006)
CrossRef
Google Scholar
Andrade, G., Santana, H., Furtado, A., Leitão, A., Ramalho, G.: Online adaptation of computer games agents: A reinforcement learning approach. Scientia 15(2) (2004)
Google Scholar
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine Learning 47, 235–256 (2002)
CrossRef
Google Scholar
Bartók, G., Szepesvári, C., Zilles, S.: Models of active learning in group-structured state spaces. Information and Computation 208, 364–384 (2010)
MathSciNet
CrossRef
Google Scholar
Baxter, J., Tridgell, A., Weaver, L.: Learning to play chess using temporal-differences. Machine learning 40(3), 243–263 (2000)
CrossRef
Google Scholar
Baxter, J., Tridgell, A., Weaver, L.: Reinforcement learning and chess. In: Machines that learn to play games, pp. 91–116. Nova Science Publishers, Inc. (2001)
Google Scholar
Beal, D., Smith, M.C.: Learning piece values using temporal differences. ICCA Journal 20(3), 147–151 (1997)
Google Scholar
Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific (1996)
Google Scholar
Billings, D., Davidson, A., Schauenberg, T., Burch, N., Bowling, M., Holte, R.C., Schaeffer, J., Szafron, D.: Game-Tree Search with Adaptation in Stochastic Imperfect-Information Games. In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 21–34. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Björnsson, Y., Finnsson, H.: Cadiaplayer: A simulation-based general game player. IEEE Transactions on Computational Intelligence and AI in Games 1(1), 4–15 (2009)
CrossRef
Google Scholar
Böhm, N., Kókai, G., Mandl, S.: Evolving a heuristic function for the game of tetris. In: Proc. Lernen, Wissensentdeckung und Adaptivität LWA, pp. 118–122 (2004)
Google Scholar
Boumaza, A.: On the evolution of artificial Tetris players. In: IEEE Symposium on Computational Intelligence and Games (2009)
Google Scholar
Bouzy, B., Helmstetter, B.: Monte Carlo Go developments. In: Advances in Computer Games, pp. 159–174 (2003)
Google Scholar
Bowling, M.: Convergence and no-regret in multiagent learning. In: Neural Information Processing Systems, pp. 209–216 (2004)
Google Scholar
Buro, M.: From simple features to sophisticated evaluation functions. In: International Conference on Computers and Games, pp. 126–145 (1998)
Google Scholar
Buro, M., Furtak, T.: RTS games as test-bed for real-time research. JCIS, 481–484 (2003)
Google Scholar
Buro, M., Lanctot, M., Orsten, S.: The second annual real-time strategy game AI competition. In: GAME-ON NA (2007)
Google Scholar
Chaslot, G., Winands, M., Herik, H., Uiterwijk, J., Bouzy, B.: Progressive strategies for monte-carlo tree search. New Mathematics and Natural Computation 4(3), 343 (2008)
MathSciNet
CrossRef
Google Scholar
Chaslot, G., Fiter, C., Hoock, J.B., Rimmel, A., Teytaud, O.: Adding Expert Knowledge and Exploration in Monte-Carlo Tree Search. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 1–13. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Chatriot, L., Gelly, S., Jean-Baptiste, H., Perez, J., Rimmel, A., Teytaud, O.: Including expert knowledge in bandit-based Monte-Carlo planning, with application to computer-Go. In: European Workshop on Reinforcement Learning (2008)
Google Scholar
Coquelin, P.A., Munos, R.: Bandit algorithms for tree search. In: Uncertainty in Artificial Intelligence (2007)
Google Scholar
Coulom, R.: Efficient Selectivity and Backup Operators in Monte-carlo Tree Search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)
CrossRef
Google Scholar
Coulom, R.: Computing Elo ratings of move patterns in the game of go. ICGA Journal 30(4), 198–208 (2007)
Google Scholar
Dahl, F.A.: Honte, a Go-playing program using neural nets. In: Machines that learn to play games, pp. 205–223. Nova Science Publishers (2001)
Google Scholar
Davidson, A.: Opponent modeling in poker: Learning and acting in a hostile and uncertain environment. Master’s thesis, University of Alberta (2002)
Google Scholar
Diuk, C., Cohen, A., Littman, M.L.: An object-oriented representation for efficient reinforcement learning. In: International Conference on Machine Learning, pp. 240–247 (2008)
Google Scholar
Droste, S., Fürnkranz, J.: Learning of piece values for chess variants. Tech. Rep. TUD–KE–2008-07, Knowledge Engineering Group, TU Darmstadt (2008)
Google Scholar
Džeroski, S., Raedt, L.D., Driessens, K.: Relational reinforcement learning. Machine Learning 43(1-2), 7–52 (2001)
CrossRef
Google Scholar
Epstein, S.L.: Toward an ideal trainer. Machine Learning 15, 251–277 (1994)
Google Scholar
Farias, V.F., van Roy, B.: Tetris: A Study of Randomized Constraint Sampling. In: Probabilistic and Randomized Methods for Design Under Uncertainty. Springer, UK (2006)
Google Scholar
Fawcett, T., Utgoff, P.: Automatic feature generation for problem solving systems. In: International Conference on Machine Learning, pp. 144–153 (1992)
Google Scholar
Finkelstein, L., Markovitch, S.: Learning to play chess selectively by acquiring move patterns. ICCA Journal 21, 100–119 (1998)
Google Scholar
Fudenberg, D., Levine, D.K.: The theory of learning in games. MIT Press (1998)
Google Scholar
Fürnkranz, J.: Machine learning in games: a survey. In: Machines that Learn to Play Games, pp. 11–59. Nova Science Publishers (2001)
Google Scholar
Fürnkranz, J.: Recent advances in machine learning and game playing. Tech. rep., TU Darmstadt (2007)
Google Scholar
Galway, L., Charles, D., Black, M.: Machine learning in digital games: a survey. Artificial Intelligence Review 29(2), 123–161 (2008)
CrossRef
Google Scholar
Gelly, S., Silver, D.: Achieving master-level play in 9x9 computer go. In: AAAI, pp. 1537–1540 (2008)
Google Scholar
Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with patterns in Monte-Carlo go. Tech. rep., INRIA (2006)
Google Scholar
Gherrity, M.: A game-learning machine. PhD thesis, University of California, San Diego, CA (1993)
Google Scholar
Ghory, I.: Reinforcement learning in board games. Tech. rep., Department of Computer Science, University of Bristol (2004)
Google Scholar
Gilgenbach, M.: Fun game AI design for beginners. In: AI Game Programming Wisdom, vol. 3. Charles River Media, Inc. (2006)
Google Scholar
Gilpin, A., Sandholm, T.: Lossless abstraction of imperfect information games. Journal of the ACM 54(5), 25 (2007)
MathSciNet
CrossRef
Google Scholar
Gilpin, A., Sandholm, T., Sørensen, T.B.: Potential-aware automated abstraction of sequential games, and holistic equilibrium analysis of Texas Hold’em poker. In: AAAI, vol. 22, pp. 50–57 (2007)
Google Scholar
Ginsberg, M.L.: Gib: Imperfect information in a computationally challenging game. Journal of Artificial Intelligence Research 14, 313–368 (2002)
Google Scholar
Gould, J., Levinson, R.: Experience-based adaptive search. Tech. Rep. UCSC-CRL-92-10, University of California at Santa Cruz (1992)
Google Scholar
Günther, M.: Automatic feature construction for general game playing. PhD thesis, Dresden University of Technology (2008)
Google Scholar
Hagelbäck, J., Johansson, S.J.: Measuring player experience on runtime dynamic difficulty scaling in an RTS game. In: International Conference on Computational Intelligence and Games (2009)
Google Scholar
Hartley, T., Mehdi, Q., Gough, N.: Online learning from observation for interactive computer games. In: International Conference on Computer Games: Artificial Intelligence and Mobile Systems, pp. 27–30 (2005)
Google Scholar
van den Herik, H.J., Uiterwijk, J.W.H.M., van Rijswijck, J.: Games solved: Now and in the future. Artificial Intelligence 134, 277–311 (2002)
CrossRef
Google Scholar
Hsu, F.H.: Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press, Princeton (2002)
Google Scholar
Hunicke, R., Chapman, V.: AI for dynamic difficult adjustment in games. In: Challenges in Game AI Workshop (2004)
Google Scholar
Kakade, S.: A natural policy gradient. In: Advances in Neural Information Processing Systems, vol. 14, pp. 1531–1538 (2001)
Google Scholar
Kalles, D., Kanellopoulos, P.: On verifying game designs and playing strategies using reinforcement learning. In: ACM Symposium on Applied Computing, pp. 6–11 (2001)
Google Scholar
Kerbusch, P.: Learning unit values in Wargus using temporal differences. BSc thesis (2005)
Google Scholar
Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Kocsis, L., Szepesvári, C., Winands, M.H.M.: RSPSA: Enhanced Parameter Optimization in Games. In: van den Herik, H.J., Hsu, S.-C., Hsu, T.-s., Donkers, H.H.L.M(J.) (eds.) CG 2005. LNCS, vol. 4250, pp. 39–56. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Kok, E.: Adaptive reinforcement learning agents in RTS games. Master’s thesis, University of Utrecht, The Netherlands (2008)
Google Scholar
Koza, J.: Genetic programming: on the programming of computers by means of natural selection. MIT Press (1992)
Google Scholar
Kuhlmann, G.J.: Automated domain analysis and transfer learning in general game playing. PhD thesis, University of Texas at Austin (2010)
Google Scholar
Lagoudakis, M.G., Parr, R., Littman, M.L.: Least-Squares Methods in Reinforcement Learning for Control. In: Vlahavas, I.P., Spyropoulos, C.D. (eds.) SETN 2002. LNCS (LNAI), vol. 2308, pp. 249–260. Springer, Heidelberg (2002)
CrossRef
Google Scholar
Laursen, R., Nielsen, D.: Investigating small scale combat situations in real time strategy computer games. Master’s thesis, University of Aarhus (2005)
Google Scholar
Levinson, R., Weber, R.: Chess Neighborhoods, Function Combination, and Reinforcement Learning. In: Marsland, T., Frank, I. (eds.) CG 2001. LNCS, vol. 2063, pp. 133–150. Springer, Heidelberg (2002)
CrossRef
Google Scholar
Lorenz, U.: Beyond Optimal Play in Two-Person-Zerosum Games. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 749–759. Springer, Heidelberg (2004)
CrossRef
Google Scholar
Mańdziuk, J.: Knowledge-Free and Learning-Based Methods in Intelligent Game Playing. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Marthi, B., Russell, S., Latham, D.: Writing Stratagus-playing agents in concurrent alisp. In: IJCAI Workshop on Reasoning, Representation, and Learning in Computer Games, pp. 67–71 (2005)
Google Scholar
McGlinchey, S.J.: Learning of AI players from game observation data. In: GAME-ON, pp. 106–110 (2003)
Google Scholar
Molineaux, M., Aha, D.W., Ponsen, M.: Defeating novel opponents in a real-time strategy game. In: IJCAI Workshop on Reasoning, Representation, and Learning in Computer Games, pp. 72–77 (2005)
Google Scholar
Moriarty, D.E., Miikkulainen, R.: Discovering complex Othello strategies through evolutionary neural networks. Connection Science 7, 195–209 (1995)
Google Scholar
Müller, M.: Position evaluation in computer go. ICGA Journal 25(4), 219–228 (2002)
Google Scholar
Naddaf, Y.: Game-independent AI agents for playing Atari 2600 console games. Master’s thesis, University of Alberta (2010)
Google Scholar
Pollack, J.B., Blair, A.D.: Why did TD-Gammon work? In: Neural Information Processing Systems, vol. 9, pp. 10–16 (1997)
Google Scholar
Ponsen, M., Spronck, P.: Improving adaptive game AI with evolutionary learning. In: Computer Games: Artificial Intelligence, Design and Education (2004)
Google Scholar
Ponsen, M., Muñoz-Avila, H., Spronck, P., Aha, D.W.: Automatically acquiring adaptive real-time strategy game opponents using evolutionary learning. In: Proceedings of the 17th Innovative Applications of Artificial Intelligence Conference (2005)
Google Scholar
Ponsen, M., Spronck, P., Tuyls, K.: Hierarchical reinforcement learning in computer games. In: Adaptive Learning Agents and Multi-Agent Systems, pp. 49–60 (2006)
Google Scholar
Ponsen, M., Taylor, M.E., Tuyls, K.: Abstraction and Generalization in Reinforcement Learning: A Summary and Framework. In: Taylor, M.E., Tuyls, K. (eds.) ALA 2009. LNCS, vol. 5924, pp. 1–33. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Ramanujan, R., Sabharwal, A., Selman, B.: Adversarial search spaces and sampling-based planning. In: International Conference on Automated Planning and Scheduling (2010)
Google Scholar
Risk, N., Szafron, D.: Using counterfactual regret minimization to create competitive multiplayer poker agents. In: International Conference on Autonomous Agents and Multiagent Systems, pp. 159–166 (2010)
Google Scholar
Rubin, J., Watson, I.: Computer poker: A review. Artificial Intelligence 175(5-6), 958–987 (2011)
MathSciNet
CrossRef
Google Scholar
Schaeffer, J.: The games computers (and people) play. In: Zelkowitz, M. (ed.) Advances in Computers, vol. 50, pp. 89–266. Academic Press (2000)
Google Scholar
Schaeffer, J., Hlynka, M., Jussila, V.: Temporal difference learning applied to a high-performance game-playing program. In: International Joint Conference on Artificial Intelligence, pp. 529–534 (2001)
Google Scholar
Schnizlein, D., Bowling, M., Szafron, D.: Probabilistic state translation in extensive games with large action sets. In: International Joint Conference on Artificial Intelligence, pp. 278–284 (2009)
Google Scholar
Schraudolph, N.N., Dayan, P., Sejnowski, T.J.: Learning to evaluate go positions via temporal difference methods. In: Computational Intelligence in Games. Studies in Fuzziness and Soft Computing, ch. 4, vol. 62, pp. 77–98. Springer, Heidelberg (2001)
CrossRef
Google Scholar
Scott, B.: The illusion of intelligence. In: AI Game Programming Wisdom, pp. 16–20. Charles River Media (2002)
Google Scholar
Shapiro, A., Fuchs, G., Levinson, R.: Learning a Game Strategy Using Pattern-Weights and Self-Play. In: Schaeffer, J., Müller, M., Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp. 42–60. Springer, Heidelberg (2003)
CrossRef
Google Scholar
Sharifi, A.A., Zhao, R., Szafron, D.: Learning companion behaviors using reinforcement learning in games. In: AIIDE (2010)
Google Scholar
Sharma, S., Kobti, Z., Goodwin, S.: General game playing: An overview and open problems. In: International Conference on Computing, Engineering and Information, pp. 257–260 (2009)
Google Scholar
Silver, D., Tesauro, G.: Monte-carlo simulation balancing. In: International Conference on Machine Learning (2009)
Google Scholar
Silver, D., Sutton, R., Mueller, M.: Sample-based learning and search with permanent and transient memories. In: ICML (2008)
Google Scholar
Spronck, P., Sprinkhuizen-Kuyper, I., Postma, E.: Difficulty scaling of game AI. In: GAME-ON 2004: 5th International Conference on Intelligent Games and Simulation (2004)
Google Scholar
Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., Postma, E.: Adaptive game AI with dynamic scripting. Machine Learning 63(3), 217–248 (2006)
CrossRef
Google Scholar
Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the NERO video game. IEEE Transactions on Evolutionary Computation 9(6), 653–668 (2005)
CrossRef
Google Scholar
Sturtevant, N., White, A.: Feature construction for reinforcement learning in Hearts. In: Advances in Computers and Games, pp. 122–134 (2007)
Google Scholar
Szczepański, T., Aamodt, A.: Case-based reasoning for improved micromanagement in real-time strategy games. In: Workshop on Case-Based Reasoning for Computer Games, 8th International Conference on Case-Based Reasoning, pp. 139–148 (2009)
Google Scholar
Szita, I., Lőrincz, A.: Learning Tetris using the noisy cross-entropy method. Neural Computation 18(12), 2936–2941 (2006a)
CrossRef
Google Scholar
Szita, I., Lőrincz, A.: Learning to play using low-complexity rule-based policies: Illustrations through Ms. Pac-Man. Journal of Articial Intelligence Research 30, 659–684 (2006b)
Google Scholar
Szita, I., Szepesvári, C.: Sz-tetris as a benchmark for studying key problems of rl. In: ICML 2010 Workshop on Machine Learning and Games (2010)
Google Scholar
Szita, I., Chaslot, G., Spronck, P.: Monte-Carlo Tree Search in Settlers of Catan. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 21–32. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Tesauro, G.: Practical issues in temporal difference learning. Machine Learning 8, 257–277 (1992)
Google Scholar
Tesauro, G.: Temporal difference learning and TD-gammon. Communications of the ACM 38(3), 58–68 (1995)
CrossRef
Google Scholar
Tesauro, G.: Comments on co-evolution in the successful learning of backgammon strategy’. Machine Learning 32(3), 241–243 (1998)
CrossRef
Google Scholar
Tesauro, G.: Programming backgammon using self-teaching neural nets. Artificial Intelligence 134(1-2), 181–199 (2002)
CrossRef
Google Scholar
Thiery, C., Scherrer, B.: Building controllers for Tetris. ICGA Journal 32(1), 3–11 (2009)
Google Scholar
Thrun, S.: Learning to play the game of chess. In: Neural Information Processing Systems, vol. 7, pp. 1069–1076 (1995)
Google Scholar
Utgoff, P.: Feature construction for game playing. In: Fürnkranz, J., Kubat, M. (eds.) Machines that Learn to Play Games, pp. 131–152. Nova Science Publishers (2001)
Google Scholar
Utgoff, P., Precup, D.: Constructive function approximation. In: Liu, H., Motoda, H. (eds.) Feature Extraction, Construction and Selection: A Data Mining Perspective, vol. 453, pp. 219–235. Kluwer Academic Publishers (1998)
Google Scholar
Veness, J., Silver, D., Uther, W., Blair, A.: Bootstrapping from game tree search. In: Neural Information Processing Systems, vol. 22, pp. 1937–1945 (2009)
Google Scholar
Weber, B.G., Mateas, M.: Case-based reasoning for build order in real-time strategy games. In: Artificial Intelligence and Interactive Digital Entertainment, pp. 1313–1318 (2009)
Google Scholar
Wender, S., Watson, I.: Using reinforcement learning for city site selection in the turn-based strategy game Civilization IV. In: Computational Intelligence and Games, pp. 372–377 (2009)
Google Scholar
Wiering, M.A.: Self-play and using an expert to learn to play backgammon with temporal difference learning. Journal of Intelligent Learning Systems and Applications 2, 57–68 (2010)
CrossRef
Google Scholar
Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in games with incomplete information. In: Neural Information Processing Systems, pp. 1729–1736 (2008)
Google Scholar