Advertisement

Wireless Platform for Monitoring of Physiological Parameters of Cattle

  • Arne Sieber
  • Alexandra Nafari
  • Rainer Konrad
  • Peter Enoksson
  • Matthias Wagner
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 146)

Abstract

Monitoring of cattle and their physiological parameters are understood to be important for maximization of milk production, prevention of health problems, nutrition planning etc. Wireless and continuous monitoring of cattle may be one possibility to assess their physiological parameters. Two aspects were investigated in this work: First trials based on state of the art research were conducted concerning monitoring of cows and heartbeat and oxygen saturation were recorded. In the second part commercially available wireless motes are discussed and tested for suitability in animal monitoring, which also includes a transmission distance experiment. Distances between several hundred meters and several km were achieved.

Keywords

Sensor Node Wireless Sensor Network Medium Access Control Estrus Detection ZigBee Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Van Eerdenburg, F.J.C.M.: Estrus detection in dairy cattle: How to beat the bull. Vlaams Diergeneeskundig Tijdschrift 75, 61–69Google Scholar
  3. 3.
    Rorie, R.W., Bilby, T.R., Lester, T.D.: Application of electronic estrus detection technologies to reproductive management of cattle. Theriogenology 57, 137–148Google Scholar
  4. 4.
    Lehrer, A.R., Lewis, G.S., Aizinbud, E.: Estrus detection in cattle – recent developments. Animal Reproduction Science 28, 355–361Google Scholar
  5. 5.
    Harley, D.B., Rushen, J., de Passillé, A.M.: Behavioural indicators of cow comfort: activity and resting behaviour of dairy cows in two types of housing. Canadian Journal of Animal Science 80, 257–263 (2000)CrossRefGoogle Scholar
  6. 6.
    Muller, R., Schrader, L.: A new method to measure behavioural activity levels in dairy cows. Applied Animal Behavior Science 83, 247–258 (2003)CrossRefGoogle Scholar
  7. 7.
    Martiskainen, P., Järvinen, M., Skön, J.-P., Tiirikainen, J., Kolehmainen, M., Mononen, J.: Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Applied Animal Bhaviour Science 119, 32–37 (2009)CrossRefGoogle Scholar
  8. 8.
    Nielsen, L.R., Pedersen, A.R., Herskin, M.S., Munksgaard, L.: Quantifying walking and standing behaviour of dairy cows using a moving average based on output from an accelerometer. Applied Animal Behaviour Science 127, 12–19 (2010)CrossRefGoogle Scholar
  9. 9.
    Pastell, M., Tiusanen, J., Hakojärvi, M., Hänninen, L.: A wireless accelerometer system with wavelet analysis for assessin lameness in cattle. Biosystems Engineering 104, 545–551 (2009)CrossRefGoogle Scholar
  10. 10.
    Robert, B., White, B.J., Renter, D.G., Larson, R.L.: Evaluation of three-dimensional accelerometers to monitor and classify behavior in cattle. Computers and Electronics in Agriculture 67, 80–84 (2009)CrossRefGoogle Scholar
  11. 11.
    Green, J.A.: The heart rate method for estimating metabolic rate: review and recommendations. Comparative Biochemistry and Physiology, Part A 158, 287–304 (2011)CrossRefGoogle Scholar
  12. 12.
    Sieber, A., Baumann, R., Fasoulas, S., Krozer, A.: Solid state electrolyte sensors for rebreather applications: preliminary investigation. Diving and Hyperbaric Medicine 41(2), 90–96 (2011)Google Scholar
  13. 13.
    Sieber, A., Yong, X., L’Abbate, A., Woegerer, C., Bedini, R.: Cardiac Sentinel: a smart GSM based embedded solution for continuous remote monitoring of cardiac patients. In: WISES 2008, Regensburg, Germany (2008) ISBN: 978-3-00-024989-1 Google Scholar
  14. 14.
    Corke, P., Wark, T., Jurdak, R., Hu, W., Valencia, P., Moore, D.: Environmental Wireless Sensor Networks. Proceedings of the IEEE 98(11) (November 2010)Google Scholar
  15. 15.
    Wark, T., Swain, D., Crossman, C., Valencia, P., Bishop-Hurley, G., Handcock, T.R.: Sensor and actuator networks for protection of environmentally sensitive areas. IEEE Pervasive Comput. 8(1), 30–36 (2009)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Warren, S., Nagl, L., Schmitz, R., Yao, J., Hildreth, T., Erickson, H., Poole, D., Andersen, D.: A distributed infrastructure for veterinary telemedicine. In: 25th Annual Conference of IEEE EMBS, Fiesta Americana Grand Coral Beach Hotel, Cancun, Quintana Roo, Mexice, September 17-21Google Scholar
  18. 18.
    Kuch, B., Koss, B., Butazzo, G., Dujic, Z., Sieber, A.: A novel wearable apnea dive computer for continuous plethysmographic monitoring of oxygen saturation and heart rate. Diving an Hyperbaric Medicine 40(1), 34–39 (2010)Google Scholar
  19. 19.
    Martinez, A., Schoenig, S., Andersen, D., Warren, S.: Ingestible pill for heart rate and core temperature measurement in cattle. In: Proceedings of 28th IEEE EMBS Annual International Conference, New York City, USA, August 30 - September 3 (2006)Google Scholar
  20. 20.
    Warren, S., Martinez, A., Sobering, T., Andersen, D.: Electrocardiographic pill cattle heart rate determination. In: Proceeding of 30th Annual International IEEE EMBS Conference, Vancouver, British Columbia, Canada, August 20-24 (2008)Google Scholar
  21. 21.
    TinyOS homepage, http://www.tinyos.net/ (last Visited August 29, 2011)
  22. 22.
    nesC homepage, http://nescc.sourceforge.net/ (last Visited August 30, 2011)
  23. 23.
    Stankovic, J.A.: Wireless Sensor Networks. Computer, 92–95 (October 2008)Google Scholar
  24. 24.
    Bri, D., Garcia, M., Lloret, J., Dini, P.: Real Deployments of Wireless Sensor Networks. In: 2009 Third International Conference on Sensor Technologies and Applications, pp. 415–423 (2009)Google Scholar
  25. 25.
    Estrin, D., Culle, D., Pister, K., Sukhatme, G.: Connecting the physical world with pervasive networks. IEEE, Pervasive Computing 1(1), 59–69 (2002)CrossRefGoogle Scholar
  26. 26.
    Frost Gorder, P.: Sizing up smart dust. Computing in Science & Engineering 5(6), 6–9 (2003)CrossRefGoogle Scholar
  27. 27.
    Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. John Wiley & Sons (2007)Google Scholar
  28. 28.
    IEEE Std 802.15.4TM-2006 (Revision of IEEE Std 802.15.4-2003). IEEE, New York (2006)Google Scholar
  29. 29.
    http://www.zigbee.org (last visited September 5, 2011)
  30. 30.
    IEEE Std 802.15.4aTM-2007 (Amendment of IEEE Std 802.15.4TM-2006). IEEE, New York (2007)Google Scholar
  31. 31.
    IEEE Std 802.15.4cTM-2009 (Amendment of IEEE Std 802.15.4TM-2006). IEEE, New York (2009)Google Scholar
  32. 32.
    IEEE Std 802.15.4dTM-2009 (Amendment of IEEE Std 802.15.4TM-2006). IEEE, New York (2009)Google Scholar
  33. 33.
    ERC Recommendation 70-03 (Tromsø 1997 and subsequent amendments) Relating to the Use of Short Range Devices (SRD), Version of 22 August, European Comunications Office, Database (2011), http://www.erodocdb.dk/
  34. 34.
    Code of Federal Regulations (CFR) Part 15, Radio Frequency Devices, http://ecfr.gpoaccess.gov (last visited September 5, 2011)
  35. 35.
    Farahani, S.: Designing Zigbee Networks and Transceivers: The Complete Guide for RF/Wireless Engineers. Butterworth Heinemann (2008)Google Scholar
  36. 36.
    Gislason, D.: Zigbee Wireless Networking. Butterworth Heinemann (2007)Google Scholar
  37. 37.
    Song, C.-C., Feng, C.-F., Wang, C.-H., Liaw, D.-C.: Simulation and experimental analysis of a ZigBee sensor network with fault detection and reconfiguration mechanism. In: 2011 8th Asian Control Conference (ASCC), May 15-18, pp. 659–664 (2011)Google Scholar
  38. 38.
    Li, J., Zhu, X., Tang, N., Sui, J.: Study on ZigBee network architecture and routing algorithm. In: 2010 2nd International Conference on Signal Processing Systems (ICSPS), July 5-7, vol. 2, pp. V2-389–V2-393 (2010)Google Scholar
  39. 39.
    Sen, J.: A Survey on Wireless Sensor Network Security. International Journal of Vommunication Networks and Information Security (IJCNIS) 1(2), 55–78 (2009)Google Scholar
  40. 40.
    http://www.zigbeeresourceguide.com/ (last visited September 6, 2011)
  41. 41.
    ETSI EN 300 220-1 V2.3.1 (February 2010), http://www.etsi.org (last visited September 06, 2011)
  42. 42.
    http://www.digi.com (last visited September 7, 2011)
  43. 43.
    http://www.an-solutions.de (last visited September 7, 2011)
  44. 44.
  45. 45.
    http://www.netvox.com.tw/ (last visited September 7, 2011)
  46. 46.
    http://www.dresden-elektronik.de (last visited September 7, 2011)
  47. 47.
    http://www.meshnetics.com (last visited September 7, 2011)
  48. 48.
    http://www.atmel.com/products/zigbee/ (last visited September 7, 2011)
  49. 49.
    http://www.libelium.com/ (last visited September 8, 2011)
  50. 50.
    Zennaro, M., Bagula, A., Gascon, D., Bielsa, A.: Long Distance Wireless Sensor Networks: simulation vs reality. In: Proceedings NSDR 2010, San Francisco, California, USA (2010)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Arne Sieber
    • 1
  • Alexandra Nafari
    • 1
  • Rainer Konrad
    • 2
  • Peter Enoksson
    • 3
  • Matthias Wagner
    • 2
  1. 1.IMEGO ABGothenburgSweden
  2. 2.University of Applied SciencesFrankfurtGermany
  3. 3.MC2, Chalmers University of TechnologyGothenburgSweden

Personalised recommendations