Performance Optimization of a Fuel Cell by Measuring the Moisture Content in Its Membranes

  • A. Rouane
  • M. Nadi
  • H. Allagui
  • D. Kourtiche
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 146)


The fuel cell (FC) is a source of energy that help to avoid pollution and thus contribute to solutions for global warming. This kind of battery is well known since many decades but its research for improving their efficiency is still in progress. Such battery could also be used for specific applications for example in agriculture where many devices operate in a limited area such as tractors, pumps, transfer systems treadmills of agricultural products.

One important parameter among others is the diagnostic of their membranes state using real time humidity measurements to improve their efficiency. In this chapter, the basics of FC are first described and their various parameters described. The importance of humidity and its consequences on the efficiency of the FC are also summarized. The different techniques used for measuring the moisture content of the FC with their advantages and disadvantages are also presented before giving the results of measurements performed by our research team at the Nancy University Henri Poincaré.


Fuel Cell Proton Exchange Membrane Fuel Cell Humidity Sensor Polymer Electrolyte Membrane Fuel Cell Polymer Electrolyte Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grech, M.A., Vella, E.M.: Hydrogen in the energy mix. Nova Science Publishers Inc. (April 2011)Google Scholar
  2. 2.
    Hordeski, M.F.: Alternative fuels: the future of hydrogen. CRC (May 2008)Google Scholar
  3. 3.
    Ball, M., Wietschel, M.: The hydrogen economy- opportunities and challenges. Cambridge University Press (September 2009)Google Scholar
  4. 4.
    Prigent, M.: Les piles à combustibles – état du développement et des recherches en cour, Editions TECHNIP (2001)Google Scholar
  5. 5.
    Brensheidt, T., et al.: Performance of ONSI PC25 PAFC Cogeneration Plant. International Journal of Hydrgen Energy 23(1), 53–56 (1998)CrossRefGoogle Scholar
  6. 6.
    Marchand, M.: Gestion de l’eau dans les Piles à Combustible. ThèSe INPG (1998)Google Scholar
  7. 7.
    Xie, G., et al.: Water transport behavior in Nafion 117 membranes. J. Electrochem. Soc. 142(9), 3057–3062 (1995)CrossRefGoogle Scholar
  8. 8.
    Chen, Y.-S., et al.: Water distribution measurement for a PEMFC through a neutron radiography. Journal of Power Sources 170, 375–386 (2007)CrossRefGoogle Scholar
  9. 9.
    Xiao Dong, W., et al.: Effect of humidity of reactants on the cell performance of PEM fuel cells with parallel and interdigitated flow field designs. Journal of Power Sources 175, 247–258 (2008)Google Scholar
  10. 10.
    Saleh, M.M., et al.: Exploring the effects of symmetrical and asymmetrical relative humidity on the performance of H2/ air PEM fuel cell at different temperatures. Journal of Power Sources 164, 503–509 (2007)CrossRefGoogle Scholar
  11. 11.
    Mench, M.M., et al.: In situ water distribution measurements in a polymer electrolyte fuel cell. Journal of Power Sources 124, 90–98 (2003)CrossRefGoogle Scholar
  12. 12.
    Liu, R.R.: Influence of water vapour on long-term performance and accelerated degradation of solid oxid fuel cell cathodes. Journal of power Sources 196, 7090–7096 (2011)CrossRefGoogle Scholar
  13. 13.
    Joo, J.H., et al.: Effects of water on oxygen surface exchange and degradation of mixed conducting perovskites. Journal of Power Sources 196, 7495–7499 (2011)CrossRefGoogle Scholar
  14. 14.
    Cui, T.: Effect of water on life prediction of liquid silicne rubber seals in polymer electrolyte membrane fuel cell. Journal of Power Sources 196, 9536–9543 (2011)CrossRefGoogle Scholar
  15. 15.
    Moore, S.: A plate flow-through microfluidic fuel cell stack. Journal of Power Sources 196, 9481–9487 (2011)CrossRefGoogle Scholar
  16. 16.
    Okada, T., et al.: Theory of water management at the anode side of polymer electrolyte fuel cell membranes. Journal of Electroanalytical Chemistry 413, 49–65 (1996)CrossRefGoogle Scholar
  17. 17.
    Springer, T., et al.: Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy. J. Electrochem. Soc. 143(2), 587–599 (1996)CrossRefGoogle Scholar
  18. 18.
    Nishikawa, H.: Measurements of humidity and current distribution in a PEFC. Journal of Power Sources 155, 213–218 (2006)CrossRefGoogle Scholar
  19. 19.
    VIASPACE Files Patent Application on Hydrogen Fuel Cell Humidity Measurement Instrument, VIASPACE (2006)Google Scholar
  20. 20.
    Lee, C.-Y., et al.: Embedded flexible micro-sensors in MEA for measuring temperature and humidity in a micro-fuel cell. Journal of Power Sources (2008)Google Scholar
  21. 21.
    Hinds, G.: Novel in situ measurements of relative humidity in a polymer electrolyte membrane fuel cell. Journal of Power Sources (2009)Google Scholar
  22. 22.
    El-Hassane, A.: Caractérisation par Spectroscopie d’Impédance de l’Impédance complexe d’une Pile à Combustible en charge:– Evaluation de l’influence de l’humidité. Thèse de l’Université Henri POINCARE (2009)Google Scholar
  23. 23.
    Miachon, S.: Développement d’une pile à combustible hydrogène / oxygène à électrolyte polymère solide de 100 cm2 à hydratation interne. Thèse de l’Université Joseph Fourier - Grenoble I (1995)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • A. Rouane
    • 1
  • M. Nadi
    • 1
  • H. Allagui
    • 1
  • D. Kourtiche
    • 1
  1. 1.Electronic Instrumentation Laboratory of NancyUniversity Henri Poincaré-Nancy1Vandoeuvre les NancyFrance

Personalised recommendations