Advertisement

Applications of Cloud Computing and GIS for Ocean Monitoring through Remote Sensing

  • Diego Fustes
  • Diego Cantorna
  • Carlos Dafonte
  • Alfonso Iglesias
  • Bernardino Arcay
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 146)

Abstract

This chapter focuses on how to monitor marine spills using powerful tools such as remote sensing and Geographic Information Systems (GIS). On the one hand, remote sensing has been widely used as one of the main ways to periodically monitor large areas, as it allows to obtain data under poor weather conditions and in spite of darkness. We particularly center upon a sensor called “Advanced Synthetic Aperture Radar” (ASAR), which is part of the Envisat payload. On the other hand, GIS have emerged in recent years as a set of standards for data organization and representation that allow themanagement of geographic data.We provide a detailed description of the design and implementation of a tool that provides an integrated framework for the detection and localization of marine spills using remote sensing, GIS, and cloud computing. Cloud computing is used because of the enormous amount of data to be processed and the need of communication between users.

Keywords

Cloud Computing Geographic Information System Radar Image Open Geospatial Consortium Synthetic Aperture Radar Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    La tragedia del prestige, evolución de la marea negra (2009), http://www.lavozdegalicia.es/albumes/index.jsp?album=20021121133541
  2. 2.
    Geoserver user’s manual: Cql tutorial (2010), http://docs.geoserver.org/1.7.x/user/tutorials/cql
  3. 3.
    2004 IEEE International: Algorithms for oil spill detection in Radarsat and ENVISAT SAR images. In: Geoscience and Remote Sensing Symposium (2004)Google Scholar
  4. 4.
    Baumann, P.: Ogc wcs 2.0 interface standard - core. Tech. rep., Open Geospatial Consortium (2010)Google Scholar
  5. 5.
    Brekke, C., Solberg, A.J.S.: Oil spill detection by satellite remote sensing. Remote Sensing of Environment 95(1), 1–13 (2005)CrossRefGoogle Scholar
  6. 6.
    Brittain, J., Darwin, I.F.: Tomcat: The Definitive Guide, 2nd edn. O’Reilly Media (2008)Google Scholar
  7. 7.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM: Society for Industrial and Applied Mathematics (1992)Google Scholar
  8. 8.
    ESA: Asar product handbook. European Spatial Agency (2007)Google Scholar
  9. 9.
    Heffelfinger, D.: Java EE 5 Development using GlassFish Application Server, 1st edn. Packt Publishing (2007)Google Scholar
  10. 10.
    Herring, J.R.: Opengis implementation standard for geographic information - simple feature access - part 2: Sql option. Tech. rep., Open Geospatial Consortium (2010)Google Scholar
  11. 11.
    Indregard, M., Solberg, A., Clayton, P.: D2-report on benchmarking oil spill recognition approaches and best practice. Tech. Rep. Archive No. 04-10225-A-Doc, Con- tract No: EVK2-CT-2003-00177, European Comission (2004)Google Scholar
  12. 12.
    Opengis, J.B.: web map server implementation specification. Tech. rep., Open Geospatial Consortium (2006)Google Scholar
  13. 13.
    Kennedy, M., Kopp, S.: Understanding Map Projections. Esri Press (2001)Google Scholar
  14. 14.
    Klawonn, F., Höppner, F.: What Is Fuzzy about Fuzzy Clustering? Understanding and Improving the Concept of the Fuzzifier. In: R. Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 254–264. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Kothuri, A., Godfrind, A., Beinat, E.: Pro Oracle Spatial for Oracle Database 11g, 2nd edn. Apress (2007)Google Scholar
  16. 16.
    Kresse, W., Fadaie, K.: Iso standards for geographic information. Springer (2004)Google Scholar
  17. 17.
    Lee, J.: Speckle analysis and smoothing of synthetic aperture radar images. Computer Graphics and Image Processing 17, 24–32 (1981)CrossRefGoogle Scholar
  18. 18.
    Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce, 2nd edn. Morgan and Claypool Publishers (2010)Google Scholar
  19. 19.
    Lupp, M.: Styled layer descriptor profile of the web map service implementation specification. Tech. rep., Open Geospatial Consortium (2007)Google Scholar
  20. 20.
    Nebert, D., Whiteside, A., Panagiotis, P.: Opengis catalogue services specification. Tech. rep., Open Geospatial Consortium (2007)Google Scholar
  21. 21.
    Nuñez, J., Llacer, J.: Astronomical image segmentation by selforganizing neural networks and wavelets. Neural Networks (16), 411–417 (2003)Google Scholar
  22. 22.
    Obe, R.O., Hsu, L.S.: PostGIS in Action. Manning Publications Co. (2011)Google Scholar
  23. 23.
    Panagiotis, P., Vretanos, A.: Opengis web feature service 2.0 interface standard. Tech. rep., Open Geospatial Consortium (2010)Google Scholar
  24. 24.
    Understanding ArcSDE: ArcGIS 9. ESRI Press (2004)Google Scholar
  25. 25.
    Eddins, W.R., Crosslin, R.L., Sutherland, D.E.: Digital Image Processing, pp. 201–208, 443–457. Prentice Hall (1992)Google Scholar
  26. 26.
    Seventh IEEE International Symposium on Cluster Computing and the Grid: Bridging the High Performance Computing Gap: the OurGrid Experience. IEEE Computer Society (2007)Google Scholar
  27. 27.
    Sotomayor, B., Childers, L.: Globus Toolkit 4: Programming Java Services. Morgan Kaufman, Elsevier (2006)Google Scholar
  28. 28.
    White, T.: Hadoop: The Definitive Guide, 2nd edn. O’Really Media|Yahoo Press (2010)Google Scholar
  29. 29.
    Zhang, D.Q., Chen, S.C.: A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artificial Intelligence in Medicine 32 (2004)Google Scholar
  30. 30.
    Zhang, H., Berg, A., Maire, M., Malik, J.: Svm-knn: Discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Diego Fustes
    • 1
  • Diego Cantorna
    • 1
  • Carlos Dafonte
    • 1
  • Alfonso Iglesias
    • 1
  • Bernardino Arcay
    • 1
  1. 1.University of Coruña, Campus de ElviñaA CoruñaSpain

Personalised recommendations