Receiver Design for MIMO Wireless Communications

  • Abbas Mohammadi
  • Fadhel M. Ghannouchi
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 145)


In the previous chapters, it has been shown that multiple input multiple out (MIMO) systems can provide either diversity order improvement or spatial multiplexing advantages. In this chapter, the receiver front-end architectures in MIMO systems are discussed. Starting with the traditional single input single output (SISO) receiver front-ends, their extensions are presented for MIMO applications. Moreover, the capacity reduction due to a noisy front-end and radio frequency interference are examined. In addition, a MIMO testbed realization technique is presented using a MIMO testbed; and, the more advanced MIMO transceiver implementation techniques are described under the commercial MIMO transceivers section.


Radio Frequency Intermediate Frequency Digital Signal Processor Local Oscillator Smart Antenna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ellinger, F.: Radio Frequency Integrated Circuits Technology, 2nd edn. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Razavi, B.: RF Microelectronics. Prentice Hall (1998)Google Scholar
  3. 3.
    Crols, J., Steyaert, M.S.J.: Low-IF Topologies for High-Performance Ana-log Front Ends of Fully Integrated Receivers. IEEE Transactions on Circuits and Systems II 45, 269–282 (1998)CrossRefGoogle Scholar
  4. 4.
    Ghannouchi, F.M., Mohammadi, A.: Six-port Technique with Microwave and Wireless Applications. Artech House (2009)Google Scholar
  5. 5.
    Mirzavand, R., Mohammadi, A., Ghannouchi, F.M.: Five-port receivers, architectures and applications. IEEE Communications Magazine 48(6), 30–36 (2010)CrossRefGoogle Scholar
  6. 6.
    Saunders, S.R., Aragon-Zavala, A.: Antenna and Propagation for Wireless Communications, 2nd edn. John Wiley & Sons (2007)Google Scholar
  7. 7.
    Kraemer, R., Katz, M.D.: Short Range Wireless Communications, Emerging Technologies and Applications. Wiley (2009)Google Scholar
  8. 8.
    Chandran, S.: Advances in Direction-of-Arrival Estimation. Artech House (2006)Google Scholar
  9. 9.
    Barry, J., Lee, E.A., Messerschmitt, D.G.: Digital Communications, 3rd edn. Kluwer Academic (2004)Google Scholar
  10. 10.
    Lari, M., Bassam, A., Mohammadi, A., Ghannouchi, F.M.: Time-Multiplexed Single Front-End MIMO Receivers with Preserved Diversity Gain. IET Communications (2010)Google Scholar
  11. 11.
    Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd edn. John Wiley (2005)Google Scholar
  12. 12.
    Rothe, H., Dahlke, W.: Theory of noisy four poles. In: Proceeding of IRE, vol. 44, pp. 811–818 (June 1956)Google Scholar
  13. 13.
    Gans, M.J.: Channel capacity between arrays – Part I: Sky noise dominates. IEEE Transactions on Communications 54, 1586–1592 (2006)CrossRefGoogle Scholar
  14. 14.
    Gans, M.J.: Channel capacity between arrays – Part II: Amplifier noise dominates. IEEE Transactions on Communications 54, 1983–1992 (2006)CrossRefGoogle Scholar
  15. 15.
    Shiu, D., et al.: Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications 48, 502–513 (2000)CrossRefGoogle Scholar
  16. 16.
    Domizioli, C.P., Hughes, B.L., Gard, K.G., Lazzi, C.: Optimal front-end design for MIMO receivers. In: IEEE Global Communications Conference, Globcom 2008, New Orleans (2008)Google Scholar
  17. 17.
    Middleton, D.: Non-Gaussian noise models in signal processing for telecommunications: New methods and results for Class A and Class B noise models. IEEE Transactions on Information Theory 45(4), 1129–1149 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Nassar, M., Gulati, K., DeYoung, M.R., Evans, B.L., Tinsley, K.R.: Mitigating near-field interference in laptop embedded wireless transceivers. Journal of Signal Processing Systems (March 2009)Google Scholar
  19. 19.
    Shi, J., Bettner, A., Chinn, G., Slattery, K., Dong, X.: A study of platform EMI from LCD panels - impact on wireless, root causes and mitigation methods. In: IEEE International Symposium on Electromagnetic Compatibility, August 14-18, vol. 3, pp. 626–631 (2006)Google Scholar
  20. 20.
    Gulati, K., Chopra, A., Heath Jr., R.W., Evans, B.L., Tinsley, K.R., Lin, X.E.: MIMO Receiver Design in the Presence of Radio Frequency Interference. In: Proc. IEEE Global Communications Conference, November 30 - December 4, New Orleans (2008)Google Scholar
  21. 21.
    Wolniansky, P.W., Foschini, G.L., Golden, G.D., Valenzuela, R.A.: V-Blast: an architecture for realizing very high data rates over the richscattering wireless channel. In: Proceedings of International Symposium on Signals, Systems, and Electronics (ISSSE 1998), Pisa, Italy, pp. 295–300 (September- October 1998)Google Scholar
  22. 22.
    Sampath, H., Talwar, S., Tellado, L., Erceg, V., Paulraj, A.: A fourth-generation MIMO-OFDM broadband wireless system: Design, performance, and field trial results. IEEE Communications Magazine 40(9), 143–149 (2002)CrossRefGoogle Scholar
  23. 23.
    Murphy, P., Lou, F., Sabharwal, A., Frantz, L.P.: An FPGA based rapid prototyping platform for MIMO systems. In: Conference Record of the 37th Asilomar Conference on Signals, Systems, and Computers, ASILOMAR 2003 (November 2003)Google Scholar
  24. 24.
    Adjoudani, A., Beck, E.C., Burg, A.P., et al.: Prototype experience for MIMO BLAST over third-generation wireless system. IEEE Journal on Selected Areas in Communications 21(3), 440–451 (2003)CrossRefGoogle Scholar
  25. 25.
    Aschbacher, E., Langwieser, R., Caban, S., Mehlfuehrer, S., Caban, G., Keirn, W., Scholtz, A.L., Rupp, M.: Design and subsystem verification of a flexible and scalable 4X4 MIMO testbed. In: IEEE Radio and Wireless Conference (RAWCON 2004), Workshop on MIMO Implementation Aspects (Septembeer 2004)Google Scholar
  26. 26.
    Garrett, D., Woodward, G., Davis, L., Knagge, G., Nicol, C.: A 28.8 Mb/s 4x4 MIMO 3G highspeed downlink packet access receiver with normalized least mean square equalization. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC 2004), San Francisco, vol. 1, pp. 420–536 (February 2004)Google Scholar
  27. 27.
    Borkowski, D., Bruhl, L.: Hardware implementation for real-time multi-user MIMO systems. In: Proceedings of IEEE Radio and Wireless Conference (RAWCON 2004) Workshop 2 on MIMO Implementation Aspects, Atlanta (September 2004)Google Scholar
  28. 28.
    Bialkowski, K.S., Zagriatski, S., Postula, A., Bialkowski, M.E.: MIMO Test-bed with an insight into signal strength distribution around transmitter/receiver sites. In: Proceedings of EuMW 2005, Paris, pp. 117–120 (October 2005)Google Scholar
  29. 29.
    Liberti, J.C., Koshy, J.C., Hoerning, T.R., Martin, C.C., Dixon, J.L., Triolo, A.A., Murray, R.R., McGiffen, T.G., Military, T.: Experimental results using a MIMO test bed for wideband, high spectral efficiency tactical communications. In: IEEE Communications Conference, MILCOM, October 17-20, vol. 3, pp. 1340–1345 (2005)Google Scholar
  30. 30.
    Bialkowski, K.S., Postula, A., Abbosh, A., Bialkowski, M.E.: 2x2 MIMO Testbed for Dual 2.4GHz/5GHz Band. In: International Conference on Electromagnetics in Advanced Applications, ICEAA 2007, September 17-21, pp. 1–4 (2007)Google Scholar
  31. 31.
    Chiu, C.Y., Cheng, C.H., Wan, Y.S., Rowell, C.R., Murch, R.D.: Design of a Flat Fading 4 x 4 MIMO Testbed for Antenna Characterization using a Modular Approach. In: IEEE Conference on Wireless Communications and Networking, Kowloon, pp. 2913–2918. Dept. of Electron. Comput. Eng, Hong Kong Univ. of Sci. Technol. (March 2007)Google Scholar
  32. 32.
    Spring, R., Zhou, L., Gogate, N., Daryoush, A.S.: 4x4 MIMO Experimental Test-bed using COTS at ISM Band. In: IEEE Radio and Wireless Symposium, pp. 173–176. Dept. of ECE, Drexel Univ., Philadelphia, PA (2007)Google Scholar
  33. 33.
    Azami, F., Ghorssi, A., Hemesi, H., Mohammadi, A., Abdipour, A.: Design and Implementation of a Flexible 4x4 MIMO Testbed. In: IEEE International Symposium on Telecommunications, IST 2008, Isfehan (2008)Google Scholar
  34. 34.
    Locher, M., Tomesen, M., Kuenen, J., Daanen, A., Visser, H., Essink, B., Vervoort, P.P., Nijrolder, M., Kopmeiners, R., Redman-White, W., Balmford, R., El Waffaoui, R.: A Low Power, High Performance BiCMOS MIMO/Diversity Direct Conversion Transceiver IC for WiBro/WiMAX (802.16e). In: IEEE 2007 Custom Intergrated Circuits Conference, CICC (2007)Google Scholar
  35. 35.
    NXP Philips Inc., WiMAX 802.16e MIMO transceivers UXA234xx (2007)Google Scholar
  36. 36.
    Maxim Integrated Product, 3.3GHz to 3.9GHz MIMO Wireless Broadband RF Transceiver, 2842 data sheet (2010)Google Scholar
  37. 37.
    PMC Seirra Inc., PM8800 WiZIRD 2x2, Released Product Brief (2008)Google Scholar
  38. 38.
    Analog Devices Inc., WiMAX/BWA/WiBRO/LTE RF MxFE 2 × 2 MIMO Transceiver, AD9356 data sheet (2010)Google Scholar
  39. 39.
    Palaskas, Y., Ravi, A., Pellerano, S., Carlton, B.R., Elmala, M.A., Bishop, R., Banerjee, G., Nicholls, R.B., Ling, S.K., Dinur, N., Taylor, S.S., Soumyanath, K.: A 5-GHz 108-Mb/s 2x2 MIMO Transceiver RFIC With Fully Integrated 20.5-dBm P1dB Power Amplifiers in 90-nm CMOS. IEEE Journal of Solid-State Circuits 41(12), 2746–2756 (2006)CrossRefGoogle Scholar
  40. 40.
    Wier, P.: Synchronizing NxN MIMO Basestations to an External Timing Reference. Analog Devices Inc. (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentAmirkabir UniversityTehranIran
  2. 2.Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations