RF Power Amplifier and Linearization Techniques

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 145)

Abstract

The radio frequency (RF) power amplifier (PA) is one of the most critical components in designing transmitters in wireless communication systems, and its efficiency dominates the overall efficiency of the transmitter. On one hand, the PA is most power consuming ; for example, in a cellular phone, the battery life is largely determined by the power efficiency of the PA. On the other hand, it is desirable to have the ability to transmit data at the highest possible rate for a given channel bandwidth, i.e., to have high spectral efficiency [1].

Keywords

Radio Frequency Power Efficiency Linearization Technique Drain Voltage Error Vector Magnitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ghannouchi, F.M.: Power Amplifier and Transmitter Architectures for Software Defined Radio Systems. IEEE Circuits and Systems Magazine 10(4), 56–63 (2010)CrossRefGoogle Scholar
  2. 2.
    Larose, C.L., Ghannouchi, F.M.: Optimal Adaptation Methods and Class of Operation: Keys to Improving Feedforward Amplifier Power Efficiency. IEEE Transactions on Vehicular Technology 54(2), 456–467 (2005)CrossRefGoogle Scholar
  3. 3.
    Taijun, L., Bumaiza, S., Ghannouchi, F.M.: Augmented Hammerstein Predistorter for Linearization of Broad-Band Wireless Transmitters. IEEE Transactions on Microwave Theory and Techniques 54(4), 1340–1349 (2006)CrossRefGoogle Scholar
  4. 4.
    Ghannouchi, F.M., Hammi, O.: Behavioural Modeling and Predistortion. IEEE Microwave Magazine 10(7), 52–64 (2009)CrossRefGoogle Scholar
  5. 5.
    Birafane, A., El-Asmar, M., Kouki, A.B., Helaoui, M., Ghannouchi, F.M.: Analyzing LINC Systems. IEEE Microwave Magazine 11(5), 59–71 (2010)CrossRefGoogle Scholar
  6. 6.
    Raab, F.H., Asbeck, P., Cripps, S., Kenington, P.B., Popovic, Z.B., Pothecary, N., Sevic, J.F., Sokal, N.O.: Power Amplifiers and Transmitters for RF and Microwave. IEEE Transactions on Microwave Theory and Techniques 50(3), 814–826 (2002)CrossRefGoogle Scholar
  7. 7.
    Cripps, S.C.: RF Power Amplifiers for Wireless Communications, 2nd edn. Artech House, Norwood (2006)Google Scholar
  8. 8.
    Kenington, P.B.: High-Linearity RF Amplifier Design. Artech House, Norwood (2000)Google Scholar
  9. 9.
    Ebrahimi, M.M., Helaoui, M., Ghannouchi, F.M.: Trading-off Stability for Efficiency in Designing Switching-Mode GaN PAs for WiMAX Applications. In: Proc. IEEE Microwave Conference 2009 (APMC 2009), Asia Pacific, pp. 2348–2351 (December 2009)Google Scholar
  10. 10.
    Grebennikov, A.: RF and Microwave Transmitter Design. John Wiley & Sons (2011)Google Scholar
  11. 11.
    Hung, T.P.: High Efficiency Switching-Mode Amplifiers for Wireless Communication Systems: ProQuest (2008)Google Scholar
  12. 12.
    Raab, F.H.: Class-E, Class-C, and Class-F power amplifiers based upon a finite number of harmonics. IEEE Transactions on Microwave Theory and Techniques 49(8), 1462–1468 (2001)CrossRefGoogle Scholar
  13. 13.
    Grebennikov, A., Sokal, N.O.: Switchmode RF Power Amplifiers: Newnes (2007)Google Scholar
  14. 14.
    Berini, P., Desgagne, M., Ghannouchi, F.M., Bosisio, R.G.: An Experimental Study of the Effects of Harmonic Loading on Microwave MESFET Oscillators and Amplifiers. IEEE Transactions on Microwave Theory and Techniques 42(6), 943–950 (1994)CrossRefGoogle Scholar
  15. 15.
    Raab, F.H.: Maximum Efficiency and Output of Class-F Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques 49(6), 1162–1166 (2011)CrossRefGoogle Scholar
  16. 16.
    Larose, C.L., Ghannouchi, F.M.: Optimization of Feedforward Amplifier Power Efficiency on the Basis of Drive Statistics. IEEE Transactions on Microwave Theory and Techniques 51(1), 41–54 (2003)CrossRefGoogle Scholar
  17. 17.
    Bassam, S.A., Helaoui, M., Ghannouchi, F.M.: Crossover Digital Predistorter for the Compensation of Crosstalk and Nonlinearity in MIMO Transmitters. IEEE Transactions on Microwave Theory and Techniques 57(5), 1119–1128 (2009)CrossRefGoogle Scholar
  18. 18.
    Hammi, O., Ghannouchi, F.M.: Power Alignment of Digital Predistorters for Power Amplifiers Linearity Optimization. IEEE Transactions on Broadcasting 55(1), 109–114 (2009)CrossRefGoogle Scholar
  19. 19.
    Katz, A.: Linearization: Reducing Distortion in Power Amplifiers. IEEE Microwave Magazine 2(4), 37–49 (2001)CrossRefGoogle Scholar
  20. 20.
    Cardinal, J.S., Ghannouchi, F.M.: A New Adaptive Double Envelope Feedback (ADEF) Linearizer for Solid State Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques 43(7), 1508–1515 (1995)CrossRefGoogle Scholar
  21. 21.
    Ghannouchi, F.M.: An S Band RF Digital Linearizer for TWTAs and SSPAs. In: European Conference on Circuit Theory and Design (ECCTD 2009), Antalya, Turkey, pp. 735–738 (August 2009)Google Scholar
  22. 22.
    Hashmi, M.S., Rogojan, Z.S., Ghannouchi, F.M.: A Flexible Dual-Inflection Point RF Predistortion Linearizer for Microwave Power Amplifiers. Progress in Electromagnetics Research C 13, 1–18 (2010)CrossRefGoogle Scholar
  23. 23.
    Rezaei, S., Hashmi, M.S., Dehlaghi, B., Ghannouchi, F.M.: A Systematic Methodology to Design Analog Predistortion Linearizer for Dual Inflection Power Amplifiers. In: International Microwave Symposium (IMS 2011), Baltimore, Maryland, USA (August 2011)Google Scholar
  24. 24.
    Nagle, P., Burton, P., Heaney, E., McGrath, F.: A wide-band linear amplitude modulator for polar transmitters based on the concept of interleaving delta modulation. IEEE Journal of Solid-State Circuits 37(12), 1748–1756 (2002)CrossRefGoogle Scholar
  25. 25.
    Staszewski, R.B., Wallberg, J.L., Rezeq, S., Hung, C.M., Eliezer, O.E., Vemulapalli, S.K., Fernando, C., Maggio, K., Staszewski, R., Barton, N., Lee, M.C., Cruise, P., Entezari, M., Muhammad, K., Leipold, D.: All-digital PLL and transmitter for mobile phones. IEEE Journal of Solid-State Circuits 40(12), 2469–2482 (2005)CrossRefGoogle Scholar
  26. 26.
    Birafane, A., Kouki, A.: On the Linearity and Efficiency of Outphasing Microwave Amplifiers. IEEE Transactions on Microwave Theory and Techniques 52(7), 1702–1708 (2004)CrossRefGoogle Scholar
  27. 27.
    Hammi, O., Helaoui, M., Ghannouchi, F.M.: Green Power Amplification Systems for 3G+ Wireless Communication Infrastructure. In: Proc. IEEE Vehicular Technology Conference, pp. 1–5 (September 2010)Google Scholar
  28. 28.
    Schreier, R., Temes, G.C.: Understanding Delta-Sigma Data Converters. Wiley-IEEE Press (2004)Google Scholar
  29. 29.
    Helaoui, M., Hatami, S., Negra, R., Ghannouchi, F.M.: A Novel Architecture of Delta-Sigma Modulator Enabling All-Digital Multiband Multistandard RF Transmitters Design. IEEE Transactions on Circuit and Systems II: Express Briefs 55(11), 1129–1133 (2008)CrossRefGoogle Scholar
  30. 30.
    Ghannouchi, F.M., Hatami, S., Aflaki, P., Helaoui, M., Negra, R.: Accurate Power Efficiency Estimation of GHz Wireless Delta-Sigma Transmitters for Different Classes of Switching Mode Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques 58(11), 2812–2819 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentAmirkabir UniversityTehranIran
  2. 2.Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations