Fundamental Concepts in Wireless Transceiver Design

  • Abbas Mohammadi
  • Fadhel M. Ghannouchi
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 145)


The fundamentals related to transceiver design for wireless communications are presented in this chapter. The main parameters in the transceiver design are discussed in order to provide a performance metric in the evaluation of wireless communication systems. The modulation accuracy is evaluated using error vector magnitude (EVM) to measure the modulation and demodulation accuracy. Some practical considerations are also discussed.


Phase Noise Multiple Input Multiple Output Noise Figure Noise Factor Software Define Radio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tasic, A., Serdijn, W.A., Long, J.R.: Adaptive Low Power Circuits for Wireless Communications. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Rouphael, T.J.: RF and Digital Signal Processing for Software Defined Radio. Newnes Publisher (2009)Google Scholar
  3. 3.
    Shaeffer, D.K., Lee, T.: The Design and Implementation of Low-Power CMOS Radio Receivers. Kluwer Academic Press (1999)Google Scholar
  4. 4.
    Giannini, F., Leuzzi, G.: Nonlinear Microwave Circuit Design. John Wiley (2004)Google Scholar
  5. 5.
    Saleh, A.A.M.: Frequency-independent and frequency-dependent nonlinear models of TWTA amplifiers. IEEE Transactions on Communications 29(11), 1715–1720 (1981)CrossRefGoogle Scholar
  6. 6.
    Luzzatto, A., Shirazi, G.: Wireless Transceiver Design. Wiley (2007)Google Scholar
  7. 7.
    Lee, T.H.: The Design of CMOS Radio Frequency Integrated Circuits, 2nd edn. Cambridge University Press, New York (2004)Google Scholar
  8. 8.
    Smith, J.R.: Modern Communication Circuits, 2nd edn. McGraw Hill (1998)Google Scholar
  9. 9.
    Leeson, D.B.: A simple model of feedback oscillator noise spectrum. Proceedings of IEEE 54, 136–154 (1966)CrossRefGoogle Scholar
  10. 10.
    Kenington, P.: RF and Baseband Techniques for Software Defined Radio. Artech House (2005)Google Scholar
  11. 11.
    Rothe, H., Dahlke, W.: Theory of noisy fourpoles. In: Proceedings IRE, vol. 44, pp. 811–818 (1956)Google Scholar
  12. 12.
    Domizioli, C.P., Hughes, B.L., Gard, K.G., Lazzi, G.: Optimal Front-End Design for MIMO Receivers. In: IEEE Global Telecommunications Conference (2008)Google Scholar
  13. 13.
    Rouphael, T.J.: RF and Digital Signal Processing for Software Defined Radio, A Multi-Standard Multi-Mode Approch. Elsevier Newnes Publications (2009)Google Scholar
  14. 14.
    Georgiadis, A.: Gain, phase imbalance, and phase noise effects on error vector magnitude. IEEE Transactions on Vehicular Technology 53(2), 443–449 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, R.F., Li, Y.M., Chen, H.Y., et al.: EVM estimation by analyzing transmitter imperfections mathematically and graphically. Analog Integrated Circuits and Signal Processing 48(3), 257–262 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    National Instruments, Introduction to WiMAX Transmitter Measurements (2009)Google Scholar
  17. 17.
    IEEE Standard for Local and Metropolitan Area Networks: IEEE Std. 802.16-2004Google Scholar
  18. 18.
    IEEE Standard for Local and Metropolitan Area Networks: IEEE Std. 802.16e-2005Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentAmirkabir UniversityTehranIran
  2. 2.Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations