Introduction

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 145)

Abstract

Multiple input multiple output (MIMO) wireless systems provide many advantages by using more than a single antenna. As such, it is considered in the current and future wireless standards. However, radio frequency (RF) transceiver design for MIMO wireless communications is a challenging task. This subject has been attracting research attention in both academia and industry. This chapter provides a general overview of MIMO systems and transceiver implementation.

Keywords

Radio Frequency Wireless Local Area Network Multiple Antenna Single Antenna Wireless Transceiver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Janaswamy, R.: Radiowave Propagation and Smart Antennas for Wireless Communications. Kluwer Academic Publishers (2001)Google Scholar
  2. 2.
    Paulraj, A., Nabar, R., Gore, D.: Introduction to Space-Time Wireless Communications. Cambridge University Press (2003)Google Scholar
  3. 3.
    Agilent Technologies, MIMO Wireless LAN PHY Layer RF Operation & Measurement. Agilent Application Note #1509 (April 2008)Google Scholar
  4. 4.
    Biglieri, E., Calderbank, R., Goldsmith, A., Paulraj, A., Vincentpoor, H.: MIMO Wireless Communications. Cambridge University Press (2007)Google Scholar
  5. 5.
    Ebrahimzad, H., Mohammadi, A.: Diversity-Multiplexing Tradeoff in MIMO Systems with Finite SNR. In: European Conference on Wireless Technology, Munich, pp. 146–149 (October 2007)Google Scholar
  6. 6.
    Qualcomm Incorporated, LTE—A Well-Designed Mobile OFDMA IP Solution, Qualcomm Incorporated Report (January 2008)Google Scholar
  7. 7.
    Tsoulos, G.: MIMO System Technology for Wireless Communications. CRC Press (2006)Google Scholar
  8. 8.
    Kaiser, T., Bourdoux, A., Boche, H., Fonollosa, J.R., Andersen, J.B., Utschick, W.: Smart Antennas—State of the Art. Hindawi Publishing Corporation (2005)Google Scholar
  9. 9.
    Rumbey, M.: LTE and the Evolution to 4G Wireless: Design and Measurement Challenges. Wiley (2009)Google Scholar
  10. 10.
    Hanzo, L., Akhtitman, Y., Wang, L., Jiamg, W.: MIMO-OFDM for LTE, WiFi and Wimax. Wiley (2010)Google Scholar
  11. 11.
    Locher, M., Tomesen, M., Kuenen, J., Daanen, A., Visser, H., Essink, B., Vervoort, P.P., Nijrolder, M., Kopmeiners, R., Redman-White, W., Balmford, R., El Waffaoui, R.: A Low Power, High Performance BiCMOS MIMO/Diversity Direct Conversion Transceiver IC for WiBro/WiMAX (802.16e). In: IEEE 2007 Custom Intergrated Circuits Conference, CICC (2007)Google Scholar
  12. 12.
    Domizioli, C.P., Hughes, B.L., Gard, K.G., Lazzi, C.: Optimal front-end design for MIMO receivers. In: IEEE Global Communications Conference, Globcom 2008, New Orleans (2008)Google Scholar
  13. 13.
    Rafati, H., Razavi, B.: Receiver Architecture for Dual-Antenna Systems. IEEE Journal Solid-State Circuits 42(6), 1291–1299 (2007)CrossRefGoogle Scholar
  14. 14.
    Eickhoff, R., Kraemer, R., Santamaria, I., Gonzalez, L.: Developing energy-efficient MIMO radios. IEEE Vehicular Technology Magazine 4(1), 34–41 (2009)CrossRefGoogle Scholar
  15. 15.
    Madani, M.H., Abdipour, A., Mohammadi, A.: Analysis of performance degradation due to non-linearity and phase noise in orthogonal frequency division multiplexing systems. IET Communications Journal 4(10) (2010)Google Scholar
  16. 16.
    Keshavarzi, M.R., Mohammadi, A., Abdipour, A., Ghannouchi, F.M.: Characterization and Compensation of DC Offset on Adaptive MIMO Direct Conversion Transceivers. IEICE Transactions on Communications (January 2011)Google Scholar
  17. 17.
    Schenk, T.: RF Imperfections in High-rate Wireless Systems. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Horlin, F., Bourdoux, A.: Digital compensation for analog front-ends: a new approach to wireless transceiver design. Wiley (2008)Google Scholar
  19. 19.
    Kalis, A., Kanatas, A.G., Papadias, C.B.: A novel approach to MIMO transmission using a single RF front end. IEEE Journal of Selected Areas of Communication 26(6) (August 2008)Google Scholar
  20. 20.
    Duman, T.M., Ghrayeb, A.: Coding for MIMO Communication Systems. Wiley (2008)Google Scholar
  21. 21.
    Molisch, A., Win, M., Winters, J.: Reduced-complexity transmit/receive-diversity systems. IEEE Transactions on Signal Processing 51(11), 2729–2738 (2003)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Alrabadi, O.N., Papadias, C.B., Kalis, A., Prasad, R.: A Universal Encoding Scheme for MIMO Transmission Using a Single Active Element for PSK Modulation Schemes. IEEE Transactions on Wireless Communications 8(10), 5133–5143 (2009)CrossRefGoogle Scholar
  23. 23.
    Tzeng, F., Jahanian, A., Pi, D., Heydari, P.: A CMOS Code-Modulated Path-Sharing Multi-Antenna Receiver Front-End. IEEE Journal of Solid-State Circuits 44(5), 1321–1335 (2009)CrossRefGoogle Scholar
  24. 24.
    Lari, M., Bassam, A., Mohammadi, A., Ghannouchi, F.M.: Time-Multiplexed Single Front-End MIMO Receivers with Preserved Diversity Gain, vol. 5(6), pp. 789–796 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentAmirkabir UniversityTehranIran
  2. 2.Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations