Skip to main content

Theoretical Background of Spatial and Spatiotemporal Patterns in Dynamical Systems

  • Chapter
  • First Online:
  • 1198 Accesses

Part of the book series: Monographs in Electrochemistry ((MOEC))

Abstract

Principles of formation of spatiotemporal and spatial patterns in chemical and electrochemical systems are outlined. Types of chemical waves: phase, kinematic, and trigger ones are distinguished. The formation of spatiotemporal patterns in excitable chemical media, in which local coupling of different sites of the reaction medium occurs through diffusion, is described. General principles of linear stability analysis of the spatially extended systems are presented, including conditions for the formation of Turing patterns. Extension of such analysis for electrochemical systems includes the role of (1) nonlocal coupling, realized through migration and of (2) positive and negative global couplings, dependent on the galvanostatic or potentiostatic operational mode, and the spatial arrangement of the working, reference, and auxiliary electrodes. All possible combinations of interactions of these couplings with the processes characterized with the negative differential resistance of N-NDR and S-NDR type were analyzed as a source of respective patterns. In particular, for the S-NDR systems the conditions for the formation of Turing patterns were outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    for the Dirichlet boundary conditions, defined as zero perturbations at z = 0 and z = L borders, \( u_{\rm n} =\sin(n{\pi} z/L);\) n = 1,2,3, …

  2. 2.

    Codimension of bifurcation means the number of system’s control parameters which have to be tuned to achieve the bifurcation. The Hopf and saddle-node bifurcations are codimension-1 bifurcations. Besides the Turing-Hopf bifurcation, another codimension-2 bifurcation occurs at a cusp point in which two lines of saddle-node bifurcations meet tangentially.

  3. 3.

    Although usually Turing patterns are considered to be stationary, it is also possible to consider nonstationary Turing patterns (see further in this section).

  4. 4.

    strictly speaking, electrode potential E = φ dlφ dl(RE), but since φ dl(RE) = const, the dynamics of dE/dt = dφ dl/dt

References

  1. Zhabotinsky AM (1974) Concentration autooscillations. Nauka, Moscow (in Russian)

    Google Scholar 

  2. Schneider FW, Münster AF (1996) Nichtlineare Dynamik in der Chemie. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  3. Epstein IR, Pojman JA (1998) An introduction to nonlinear chemical dynamics. Oscillations, waves, patterns, and chaos. Oxford University Press, Oxford

    Google Scholar 

  4. Scott SK (1994) Oscillations, waves and chaos in chemical kinetics. Oxford Science Publications, Oxford

    Google Scholar 

  5. Gray P, Scott SK (1990) Chemical oscillations and instabilities. Non-linear chemical kinetics. Clarendon Press, Oxford

    Google Scholar 

  6. Field RJ, Burger M (eds) (1985) Oscillations and travelling waves in chemical systems. Wiley, New York

    Google Scholar 

  7. Pekala K, Wiśniewski A, Jurczakowski R, Wiśniewski T, Wojdyga M, Orlik M (2010) Monitoring of spatiotemporal patterns in the oscillatory chemical reactions with the infrared camera: experiments and model interpretation. J Phys Chem A 114:7903–7911

    Article  CAS  Google Scholar 

  8. Pojman JA, Epstein IR (1990) Convective effects on chemical waves. 1. Mechanisms and stability criteria. J Phys Chem 94:4966–4972

    Article  CAS  Google Scholar 

  9. Kiss I, Merkin JH, Scott SK, Simon PL (2003) Travelling waves in the Oregonator model for the BZ reaction. Phys Chem Chem Phys 5:5448–5453

    Article  CAS  Google Scholar 

  10. Merkin JH (2009) Travelling waves in the Oregonator model for the BZ reaction. IMA J Appl Math 74:622–643 doi:10.1093/imamat/hxp009

    Article  Google Scholar 

  11. Biosa G, Bastianoni S, Rustici M (2006) Chemical waves. Chem Eur J 12:3430–3437. doi:10.1002/chem.200500929

    Article  CAS  Google Scholar 

  12. Steinbock O, Tóth Á, Showalter K (1995) Navigating complex labirynths: optimal paths from chemical waves. Science 267:868–871 doi:10.1126/science.267.5199.868

    Article  CAS  Google Scholar 

  13. Kiss I, Merkin JH, Scott SK, Simon PL (2004) Electric field effects on travelling waves in the Oregonator model for the Belousov-Zhabotinsky reaction. Q J Mech Appl Math 57:467–494. doi:10.1093/qjmam/57.4.467

    Article  Google Scholar 

  14. Ševčikova H, Marek M (1983) Chemical waves in an electric field. Physica D 9:140–156

    Article  Google Scholar 

  15. Ševčikova H, Marek M, Müller SC (1992) The reversal and splitting of waves in an excitable medium caused by an electric field. Science 257:951–954

    Article  Google Scholar 

  16. Kosek J, Ševčikova H, Marek M (1995) Splitting of excitable pulse waves. J Phys Chem 99:6889–6896

    Article  CAS  Google Scholar 

  17. Ševčikova H, Schreiber I, Marek M (1996) Dynamics of oxidation Belousov-Zhabotinsky waves in an electric field. J Phys Chem 100:19153–19164

    Article  Google Scholar 

  18. Ševčikova H, Kosek J, Marek M (1996) Splitting of 2D waves of excitation in a direct current electric field. J Phys Chem 100:1666–1675

    Article  Google Scholar 

  19. Müller SC, Steinbock O, Schütze J (1992) Autonomous pacemaker of chemical waves created by spiral annihilation. Physica A 188:47–54

    Article  Google Scholar 

  20. Agladze KI, DeKepper P (1992) Influence of electric field on rotating spiral waves in the Belousov-Zhabotinsky reaction. J Phys Chem 96:5239–5242

    Article  CAS  Google Scholar 

  21. Steinbock O, Schütze J, Müller SC (1992) Electric-field-induced drift and deformation of spiral waves in an excitable medium. Phys Rev Lett 68:248–251

    Article  CAS  Google Scholar 

  22. Perez-Munuzuri V, Aliev R, Vasiev B, Krinsky VI (1992) Electric current control of spiral wave dynamics. Physica D 56:229–234

    Article  CAS  Google Scholar 

  23. Ertl G (1990) Oscillatory catalytic reactions at single-crystal surfaces. Adv Catal 37:213–277

    Article  CAS  Google Scholar 

  24. Imbihl R (1993) Oscillatory reactions on single crystal surfaces. Prog Surf Sci 44:185–343

    Article  CAS  Google Scholar 

  25. Imbihl R, Ertl G (1995) Oscillatory kinetics in heterogeneous catalysis. Chem Rev 95:697–733

    Article  CAS  Google Scholar 

  26. Babloyantz A (1986) Molecules, dynamics and life. An introduction to self-organization of matter. Wiley-Interscience, New York

    Google Scholar 

  27. Nicolis G (1995) Introduction to nonlinear science. Cambridge University Press, New York

    Book  Google Scholar 

  28. De Wit A (1993) Brisure de symétrie spatial et dynamique spatio-temporelle dans les systems reaction-diffusion (in French), Ph.D. thesis. Université Libre de Bruxelles

    Google Scholar 

  29. De Wit A (1999) Spatial patterns and spatiotemporal dynamics in chemical systems. Adv Chem Phys 109:435–513

    Article  Google Scholar 

  30. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. From dissipative structures to order through fluctuations. Wiley-Interscience, New York

    Google Scholar 

  31. Rovinsky A, Metzinger M (1992) Interaction of Turing and Hopf bifurcations in chemical systems. Phys Rev A 46:6315–6322

    Article  CAS  Google Scholar 

  32. Erneux T, Herschkowitz-Kaufman M (1977) Rotating waves as asymptotic solutions of a model chemical reaction. J Chem Phys 66:248–250

    Article  CAS  Google Scholar 

  33. Kuramoto Y (1981) Rhythms and turbulence in populations of chemical oscillators. Physica A 106:128–143

    Article  Google Scholar 

  34. Turing AM (1952) The chemical basis for morphogenesis. Philos Trans Soc Lond Ser B 327:37–72

    Article  Google Scholar 

  35. Britton NF (2003) Essential mathematical biology. Springer, London

    Book  Google Scholar 

  36. Murray JD (2002) Mathematical biology. I. An introduction, 3rd edn. Springer, New York

    Google Scholar 

  37. Murray JD (2003) Mathematical biology. II. Spatial models and biomedical applications, 3rd edn. Springer, New York

    Google Scholar 

  38. Foryś U (2005) Mathematics in biology. WNT, Warsaw (in Polish)

    Google Scholar 

  39. Krischer K (2001) Spontaneous formation of spatiotemporal patterns at the electrode/electrolyte interface. J Electroanal Chem 501:1–21

    Article  CAS  Google Scholar 

  40. Tam WY, Horsthemke W, Noszticzius Z, Swinney HL (1988) Sustained spiral waves in a continuously fed unstirred chemical reactor. J Chem Phys 88:3395–3396

    Article  CAS  Google Scholar 

  41. Lengyel I, Kádár S, Epstein IR (1992) Quasi-two dimensional Turing patterns in an imposed gradient. Phys Rev Lett 69:2729–2732

    Article  CAS  Google Scholar 

  42. Mazouz N, Krischer K (2000) A theoretical study on Turing patterns in electrochemical systems. J Phys Chem 104:6081–6090

    CAS  Google Scholar 

  43. Li YJ, Oslonovitch J, Mazouz N, Plenge F, Krischer K, Ertl G (2001) Turing-type patterns on electrode surfaces. Science 291:2395–2398

    Article  CAS  Google Scholar 

  44. Zhabotinsky AM, Dolnik M, Epstein IR (1995) Pattern formation arising from wave instability in a simple reaction-diffusion system. J Chem Phys 103:10306–10314

    Article  CAS  Google Scholar 

  45. Yang L, Dolnik M, Zhabotinsky AM, Epstein IR (2002) Pattern formation arising from interactions between Turing and wave instabilities. J Chem Phys 117:7259–7265

    Article  CAS  Google Scholar 

  46. Kapral R, Showalter K (eds) (1995) Chemical waves and patterns. Kluwer, Dordrecht

    Google Scholar 

  47. Krischer K (1999) Principles of temporal and spatial pattern formation in electrochemical systems. In: Conway BE, Bockris JO’M, White R (eds) Modern aspects of electrochemistry. Plenum, New York

    Google Scholar 

  48. Krischer K (2003) Nonlinear dynamics in electrochemical systems. In: Alkire RC, Kolb DM (eds) Advances in electrochemical science and engineering. Wiley-VCH, Weinheim

    Google Scholar 

  49. Krischer K, Mazouz N, Grauel P (2001) Fronts, waves, and stationary patterns in electrochemical systems. Angew Chem Int Ed 40:850–869

    Article  CAS  Google Scholar 

  50. Pigeaud A, Kirkpatrick HB (1969) A correlated potentiostatic microscopic study of iron passivation in sulfuric acid. Corrosion 25:209

    Article  CAS  Google Scholar 

  51. Russell PP, Newman J (1983) Experimental determination of the passive-active transition for iron in 1M sulfuric acid. J Electrochem Soc 130:547–553

    Article  CAS  Google Scholar 

  52. Mazouz N, Krischer K, Flätgen G, Ertl G (1997) Synchronization and pattern formation in electrochemical oscillators: model calculations. J Phys Chem 101:2403–2410

    CAS  Google Scholar 

  53. Jorne J (1983) Oscillations and concentration patterns in electrochemical systems. Electrochim Acta 28:1713–1717

    Article  CAS  Google Scholar 

  54. Koper MTM, Sluyters JH (1993) A simplified approach to the modeling of wave propagation at electrode/electrolyte interfaces. Electrochim Acta 38:1535–1544

    Article  CAS  Google Scholar 

  55. Mazouz N, Flätgen G, Krischer K (1997) Tuning the range of spatial coupling in electrochemical systems: from local via nonlocal to global coupling. Phys Rev E 55:2260–2266

    Article  CAS  Google Scholar 

  56. Flätgen G, Krischer K (1995) Accelerating fronts in an electrochemical system due to global coupling. Phys Rev E 51:3997–4004

    Article  Google Scholar 

  57. Christoph J, Otterstedt RD, Eiswirth M, Jaeger NI, Hudson JL (1999) Negative coupling during oscillatory pattern formation on a ring electrode. J Chem Phys 110:8614–8621

    Article  CAS  Google Scholar 

  58. Christoph J, Eiswirth M (2002) Theory of electrochemical pattern formation. Chaos 12:215–230

    Article  CAS  Google Scholar 

  59. Hodgkin AL Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  Google Scholar 

  60. Mazouz N, Flätgen G, Krischer K, Kevrekidis IG (1998) The impact of the operation mode on pattern formation in electrode reactions. J Electrochem Soc 145:2404–2411

    Article  CAS  Google Scholar 

  61. Lev O, Sheintuch M, Pismen LM, Yarnitzky C (1998) Standing and propagating wave oscillations in the anodic dissolution of nickel. Nature 336:458–459

    Article  Google Scholar 

  62. Lev O, Sheintuch M, Yarnitzky M, Pismen LM (1990) Spatial current distribution during nickel anodic dissolution in sulfuric acid. Chem Eng Sci 45:839–847

    Article  CAS  Google Scholar 

  63. Flätgen G, Krischer K (1995) A general model for pattern formation in electrode reactions. J Chem Phys 103:5428–5436

    Article  Google Scholar 

  64. Kiss IZ, Wang W, Hudson JL (1999) Experiments on arrays of globally coupled periodic electrochemical oscillators. J Phys Chem B 103:11433–11444

    Article  CAS  Google Scholar 

  65. Grauel P, Christoph J, Flätgen G, Krischer K (1998) Stationary potential patterns during the reduction of peroxodisulfate at Ag ring electrodes. J Phys Chem B 102:10264–10271

    Article  CAS  Google Scholar 

  66. Krischer K, Mazouz N, Flätgen G (2000) Pattern formation in globally coupled electrochemical systems with an S-shaped current-potential curve. J Phys Chem B 104:7545–7553

    Article  CAS  Google Scholar 

  67. Niederostheide JJ (ed) (1995) Nonlinear dynamics and pattern formation in semiconductors and devices. Springer, Berlin

    Google Scholar 

  68. Meixner M, Rodin P, Schöll E (1998) Fronts in a bistable medium with two global constraints: oscillatory instability and large-amplitude limit-cycle motion. Phys Rev E 58:5586–5591

    Article  CAS  Google Scholar 

  69. Annalai J, Liauw M, Luss D (1999) Temperature patterns on a hollow cylindrical catalytic pellet. Chaos 9:36–42

    Article  Google Scholar 

  70. Mikhailov AS (1994) Foundations of synergetics I, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  71. Schell M, Albahadily FN, Safar J (1993) Decreases in the inhibition of the electrocatalyzed oxidation of formic acid by carbon monoxide. J Electroanal Chem 353:303–313

    Article  CAS  Google Scholar 

  72. Strasser P, Christoph J, Lin WF, Eiswirth M, Hudson JL (2000) Standing wave oscillations in an electrocatalytic reaction. J Phys Chem A 104:1854–1860

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orlik, M. (2012). Theoretical Background of Spatial and Spatiotemporal Patterns in Dynamical Systems. In: Self-Organization in Electrochemical Systems II. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27627-9_1

Download citation

Publish with us

Policies and ethics