Electron Tomography of Skin

  • Lars Norlén


The three-dimensional structure of native skin can be studied by electron tomography of vitreous skin sections (TOVIS) down to a molecular resolution in situ. However, a combination of incomplete and noisy data, a difficult sample preparation procedure, and sensitivity for specimen degradation during data collection presently limit TOVIS’ practical usage within dermatology. Here we pinpoint the major limitations with molecular skin TOVIS and propose some future applications in skin science.


Atopic Dermatitis Electron Tomography Molecular Resolution Native Skin Desmosomal Cadherins 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Al-Amoudi A, Castaño-Dieza D, Devosa DP, Russell RB, Johnson GT, Frangakis A (2011) The three-dimensional molecular structure of the desmosomal plaque. PNAS 108(16):6480–6485PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Amoudi A, Dıez DC, Betts MJ, Frangakis AS (2007) The molecular architecture of cadherins in native epidermal desmosomes. Nature 450:832–837PubMedCrossRefGoogle Scholar
  3. 3.
    Al-Amoudi A, Dubochet J, Norlén L (2005) Nanostructure of the epidermal extracellular space as observed by cryo-electron microscopy of vitreous sections of human skin. J Invest Dermatol 124:764–777PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Amoudi, A. Norlén, L. Dubochet, J (2004) Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J Struct Biol. 148(1):131–5PubMedCrossRefGoogle Scholar
  5. 5.
    Baker ML, Yu Z, Chiu W, Bajaj C (2006) Automated segmentation of molecular subunits in electron cryomicroscopy density maps. J Struct Biol 156:432–441PubMedCrossRefGoogle Scholar
  6. 6.
    Candès EJ (2006) Compressive sampling. Proc. Int. Congress Math, Madrid, Spain, pp 1–20Google Scholar
  7. 7.
    Cipra BA (2006) l1-magic. SIAM News 39(9)Google Scholar
  8. 8.
    Fanelli D, Öktem O (2008) Electron tomography: a short review with an emphasis on the absorption potential model for the forward problem. Inverse Problems 24 013001 (51 pp)Google Scholar
  9. 9.
    Garduno E, Wong-barnum M, Vilkmann N, Ellisman MH (2008) Segmentation of electron tomographic data sets using fuzzy set theory principles. J Struct Biol 162:368–379PubMedCrossRefGoogle Scholar
  10. 10.
    Gilbert PFC (1972) Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36:105–117PubMedCrossRefGoogle Scholar
  11. 11.
    Lammerts van Bueren JJ, Bleeker WK, Brännström A, von Euler A, Jansson M, Peipp M, Schneider-Merck T, Valerius T, van de Winkel JBJ, Parren PWHI (2008) The antibody zalutumumab inhibits epidermal growth factor receptor signaling by limiting intra- and intermolecular flexibility. PNAS 105(16):6109–6114PubMedCrossRefGoogle Scholar
  12. 12.
    Masich S, Östberg T, Norlén L, Shupliakov O, Daneholt B (2006) A procedure to deposit fiducial markers on vitreous cryo-sections for cellular tomography. J Struct Biol 156:461–468PubMedCrossRefGoogle Scholar
  13. 13.
    Norlén L, Al-Amoudi A (2004) Stratum corneum keratin structure, function, and formation: the cubic rod-packing and membrane templating model. J Invest Dermatol 123(4):715–732PubMedCrossRefGoogle Scholar
  14. 14.
    Norlén L, Al-Amoudi A, Dubochet J (2003) A cryo-transmission electron microscopy study of skin barrier formation. J Invest Dermatol 120:555–560PubMedCrossRefGoogle Scholar
  15. 15.
    Norlén L, Öktem O, Skoglund U (2009) Molecular cryo-electron tomography of vitreous tissue sections: current challenges. J Microsc 235:293–307PubMedCrossRefGoogle Scholar
  16. 16.
    Penczek PA, Frank J (2006) Resolution in electron tomography, Chapter 10. In: Frank J (ed) Electron tomography – methods for three-dimensional visualization of structures in the cell, 2nd edn. Springer, New York, pp 307–330Google Scholar
  17. 17.
    Quinto ET, Öktem O (2008) Local tomography in electron microscopy. SIAM J Appl Math 68(5):1282–1303CrossRefGoogle Scholar
  18. 18.
    Radermacher M (1988) Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J Electron Microsc Tech 9:359–394PubMedCrossRefGoogle Scholar
  19. 19.
    Radermacher M (1992) Weighted back-projection methods. In: Frank J (ed) Electron tomography – three-dimensional imaging with the transmission electron microscope, Chapter 5. Plenum Press, New YorkGoogle Scholar
  20. 20.
    Ramachandran GN, Lakshminarayanan AV (1971) Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc Natl Acad Sci USA 68:2236–2240PubMedCrossRefGoogle Scholar
  21. 21.
    Rullgård H (2008) A new principle for choosing regularization parameter in certain inverse problems. arXiv:0803.3713v2Google Scholar
  22. 22.
    Rullgård, H. Öktem, O. Skoglund, U (2007) A componentwise iterative relative entropyregularization method with updated prior and regularization parameter. Inverse Problems 23:2121–2139Google Scholar
  23. 23.
    Rullgård, H. Öfverstedt, L-G. Masich, S. Daneholt, B. Öktem, O (2011) Simulation of transmission electron microscope images of biological specimens. J. Microscopy 243(3):234–256Google Scholar
  24. 24.
    Svensson S (2007) A decomposition scheme for 3D fuzzy objects based on fuzzy distance information. Pattern Recognit Lett 28:224–232CrossRefGoogle Scholar
  25. 25.
    Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57:551–565PubMedCrossRefGoogle Scholar
  26. 26.
    Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16(5):673–683PubMedCrossRefGoogle Scholar
  27. 27.
    Vainshtein BK (1970) Finding the structure of objects from projections. Krystallograftya 15:894–902; Vainshtein BK (1970) Crystallography 15:781–787 (Transl. in Soviet Physics)Google Scholar
  28. 28.
    Volkmann N (2002) A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. J Struct Biol 138:123–129PubMedCrossRefGoogle Scholar
  29. 29.
    Wriggers W (2004) Spanning the length scales of biomolecular simulation. Structure 12(1):1–2PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Cellular and Molecular Biology (CMB)Medical Nobel Institute, Karolinska InstituteStockholmSweden
  2. 2.Dermatology ClinicKarolinska University HospitalStockholmSweden

Personalised recommendations