Changes in Stratum Corneum Thickness, Water Gradients and Hydration by Moisturizers

  • Jonathan M. Crowther
  • Paul J. Matts
  • Joseph R. Kaczvinsky


As the outermost layer of skin, the stratum corneum (SC), plays the pivotal role in protecting our bodies. It is the first line of defense against the outside world, providing both mechanical and chemical protection and regulating the movement of water and other materials in and out, enabling the bodies’ equilibrium to be maintained. Despite the relatively small dimensions of the SC over most of the body (its thickness is of the order of only 20 μm over a large portion of the body), it has a very complicated chemical and physical structure. Chemical concentrations and cellular structure change across its thickness, and these changes are responsible for the properties it possesses and for regulating the processes occurring within it. To better understand the role all of these components play within the SC, therefore, is not only necessary to ask ‘how much is there?’, but also ‘where is it located?’ and ‘how is it distributed?’ While a number of techniques have been developed previously to analyze concentration gradients within the SC, until recently no single technique has been able to quantitatively assess different chemical components as a function of depth, rapidly and in vivo. Furthermore, as the use of topical cosmetic products has become more popular and widespread, especially in the anti-aging market, the ability to accurately monitor ingredients which are capable of penetrating into the skin is now a necessity. Also, it is becoming more and more important to demonstrate how topically applied products can improve the skin in clinical tests; therefore, new methods to assess the skin in greater and greater detail are constantly being explored.


Stratum Corneum Stratum Granulosum Water Profile Viable Epidermis Volar Forearm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was sponsored by Procter and Gamble Technical Centres Ltd.


  1. 1.
    Blank IH (1952) Factors which influence the water content of the stratum corneum. J Invest Dermatol 18:433–440PubMedGoogle Scholar
  2. 2.
    Grubauer G, Elias PM, Feingold KR (1989) Transepidermal water loss: the signal for recovery of barrier structure and function. J Lipid Res 30:323–333PubMedGoogle Scholar
  3. 3.
    Loden M (1995) Biophysical properties of dry atopic and normal skin with special reference to skin care products. Acta Derm Venereol Suppl (Stockholm) 192:1–48Google Scholar
  4. 4.
    Agache P (2004) Stratum corneum histopathology. In: Agache P, Humbert P (eds) Measuring the skin. Springer, BerlinGoogle Scholar
  5. 5.
    Warner RR, Myers MC, Taylor DA (1988) Electron probe analysis of human skin: determination of the water concentration profile. J Invest Dermatol 90:218–244PubMedCrossRefGoogle Scholar
  6. 6.
    Warner RR, Lilly NA (1994) Correlation of water content with ultrastructure in the stratum corneum. In: Elsner P, Berardesca E, Maibach HI (eds) Bioengineering of the skin: water and the stratum corneum. CRC Press Inc, Boca RatonGoogle Scholar
  7. 7.
    Richter T, Peuckert C, Sattler M et al (2004) Dead but highly dynamic – the stratum corneum is divided into three hydration zones. Skin Pharmacol Physiol 17:246–257PubMedCrossRefGoogle Scholar
  8. 8.
    Bouwstra JA, de Graff A, Gooris GS et al (2003) Water distribution and related morphology in human stratum corneum at different hydration levels. J Invest Dermatol 120(5):750–758PubMedCrossRefGoogle Scholar
  9. 9.
    Rawlings AV, Scott IR, Harding CR, Bowser P (1994) Stratum corneum moisturization at the molecular level. J Invest Dermatol 103:731–734PubMedCrossRefGoogle Scholar
  10. 10.
    Brancaleon L, Bamberg MP, Sakamaki T, Kollias N (2001) Attenuated total reflection-Fourier transform infrared spectroscopy as a possible method to investigate biophysical parameters of stratum corneum in vivo. J Invest Dermatol 116:380–386PubMedCrossRefGoogle Scholar
  11. 11.
    Arimoto H, Egawa M, Yamada Y (2005) Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin. Skin Res Technol 11:27–35PubMedCrossRefGoogle Scholar
  12. 12.
    Robinson M, Visscher M, Laruffa A, Wickett R (2010) Natural moisturizing factors (NMF) in the stratum corneum (SC). II. Regeneration of NMF over time after soaking. J Cosmet Sci 61(1):23–29PubMedGoogle Scholar
  13. 13.
    Caspers PJ, Lucassen GW, Carter EA et al (2001) In vivo confocal Raman microspectrometer of the skin. Noninvasive determination of molecular concentration profiles. J Invest Dermatol 116:434–442PubMedCrossRefGoogle Scholar
  14. 14.
    Wertz PW (2004) Stratum corneum lipids and water. Exogenous Dermatol 3:53–56CrossRefGoogle Scholar
  15. 15.
    Kalia YN, Alberti I, Sekkat N et al (2000) Normalization of stratum corneum barrier function and transepidermal water loss in vivo. Pharma Res 17(9):1148–1150CrossRefGoogle Scholar
  16. 16.
    Pirot F, Berardesca E, Kalia YN et al (1998) Stratum corneum thickness and apparent water diffusivity: facile and noninvasive quantification in vivo. Pharma Res 15(3):492–494CrossRefGoogle Scholar
  17. 17.
    Dikstein S, Zlotogorski A (1994) Measurement of skin pH. Acta Dermatol Venereol (Stockholm) 185:18–20Google Scholar
  18. 18.
    Ohman H, Vahlquist A (1994) In vivo studies concerning a pH gradient in human stratum corneum and upper epidermis. Acta Dermatol Venereol (Stockholm) 74:375–379Google Scholar
  19. 19.
    Krien PM, Kermici M (2000) Evidence for the existence of self regulated enzymatic process within the human stratum corneum: an unexpected role for urocanic acid. J Invest Dermatol 115:414–420PubMedCrossRefGoogle Scholar
  20. 20.
    Aberg C, Wennerstrom H, Sparr E (2008) Transport processes in responding lipid membranes: a possible mechanism for pH gradient in the stratum corneum. Langmuir 24:8061–8070PubMedCrossRefGoogle Scholar
  21. 21.
    Lieckfeldt R, Villalain J, Gomez-Fernandez JC, Lee G (1995) Apparent pKa of the fatty acids within ordered mixtures of model human stratum corneum lipids. Pharmacol Res 12:1614–1617CrossRefGoogle Scholar
  22. 22.
    Patterson MJ, Galloway SD, Nimmo NA (2000) Variations in regional sweat composition in normal human males. Exp Physiol 85:869–875PubMedCrossRefGoogle Scholar
  23. 23.
    Behne M, Oda Y, Murata S et al (2000) Functional role of the sodium-hydrogen antiporter, NHE1, in the epidermis: pharmacologic and NHE1 null-allele mouse studies. J Invest Dermatol 114:797CrossRefGoogle Scholar
  24. 24.
    Visscher MO, Chatterjee R, Munson KS et al (2000) Changes in diapered and nondiapered infant skin over the first month of life. Pediatr Dermatol 17:45–51PubMedCrossRefGoogle Scholar
  25. 25.
    Hanson KM, Barry NP, Gratton E, Clegg RM (2000) Fluorescence lifetime imaging of pH in the stratum corneum. Biophys J Annu Meet Abstr:B588Google Scholar
  26. 26.
    Hanson KM, Behne MJ, Barry NP et al (2002) Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J 83:1682–1690PubMedCrossRefGoogle Scholar
  27. 27.
    Menon GK, Grayson S, Elias PM (1985) Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol 84:508–512PubMedCrossRefGoogle Scholar
  28. 28.
    Mauro T, Bench G, Sidderas-Haddad E et al (1998) Acute barrier perturbation abolishes the Ca2+ and K+ gradients in murine epidermis: quantitative measurement using PIXE. J Invest Dermatol 111:1198–1201PubMedCrossRefGoogle Scholar
  29. 29.
    Elias PM, Ahn SK, Brown BE et al (2002) Origin of the epidermal calcium gradient: regulation by barrier status and role of active vs passive mechanisms. J Invest Dermatol 119:1269–1274PubMedCrossRefGoogle Scholar
  30. 30.
    Prasch T, Knübel G, Schmidt-Fonk K et al (2000) Infrared spectroscopy of the skin: influencing the stratum corneum with cosmetic products. Int J Cosmet Sci 22:371–383PubMedCrossRefGoogle Scholar
  31. 31.
    Hathout RM, Mansour S, Mortada ND et al (2010) Uptake of microemulsion components into the stratum corneum and their molecular effects on skin barrier function. Mol Pharm 7(4):1266–1273PubMedCrossRefGoogle Scholar
  32. 32.
    Notingher I, Imhof RE (2004) Mid-infrared in vivo depth-profiling of topical chemicals on skin. Skin Res Technol 10:113–121PubMedCrossRefGoogle Scholar
  33. 33.
    Stamatas GN, de Sterke J, Hauser M et al (2008) Lipid uptake and skin occlusion following topical application of oils on adult and infant skin. J Dermatol Sci 50:135–142PubMedCrossRefGoogle Scholar
  34. 34.
    Chrit L, Bastien P, Sockalingum GD et al (2006) An in vivo randomized study of human skin moisturization by a new confocal Raman fiber-optic microprobe: assessment of a glycerol-based hydration cream. Skin Pharmacol Physiol 19(4):207–215PubMedCrossRefGoogle Scholar
  35. 35.
    Chrit L, Bastien P, Biatry B et al (2006) In vitro and in vivo confocal Raman study of human skin hydration: assessment of anew moisturizing agent, pMPC. Biopolymers 85:359–369CrossRefGoogle Scholar
  36. 36.
    Förster M, Bolzinger MA, Ach D et al (2011) Ingredients tracking of cosmetic formulations in the skin: a confocal Raman microscopy investigation. Pharm Res 28(4):858–872PubMedCrossRefGoogle Scholar
  37. 37.
    Williams AC, Barry BW, Edwards HGM, Farwell DW (1993) A critical comparison of some Raman spectroscopic techniques for studies of human stratum corneum. Pharm Res 10:1642–1647PubMedCrossRefGoogle Scholar
  38. 38.
    Williams AC, Edwards HGM, Barry BW (1992) Fourier transform Raman spectroscopy. A novel application for examining human stratum corneum. Int J Pharm 81:R11–R14CrossRefGoogle Scholar
  39. 39.
    Lucassen GW, Caspers PJ, Puppels GJ (1998) In vivo infrared and Raman spectroscopy of human stratum corneum. Proc SPIE 3257:52–61CrossRefGoogle Scholar
  40. 40.
    Shim MG, Wilson BC (1997) Development of an in vivo Raman spectroscopic system for diagnostic applications. J Raman Spectrosc 28:131–142CrossRefGoogle Scholar
  41. 41.
    Caspers PJ, Lucassen GW, Wolthuis R et al (1998) In vitro and in vivo Raman spectroscopy of human skin. Biospectroscopy 4:S31–S39PubMedCrossRefGoogle Scholar
  42. 42.
    Caspers PJ, Lucassen GW, Bruining HJ, Puppels GJ (2000) Automated depth-scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin. J Raman Spectrosc 31:813–818CrossRefGoogle Scholar
  43. 43.
    Caspers PJ, Lucassen GW, Puppels GJ (2003) Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys J 85:572–580PubMedCrossRefGoogle Scholar
  44. 44.
    Chrit L, Hadjur C, Morel S et al (2005) In vivo chemical investigation of human skin using a confocal Raman fiber optic microprobe. J Biomed Opt 10(4):44007PubMedCrossRefGoogle Scholar
  45. 45.
    Egawa M, Hirao T, Takahashi M (2007) In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy. Acta Derm Venereol 87(1):4–8PubMedCrossRefGoogle Scholar
  46. 46.
    Egawa M, Tagami H (2008) Comparison of the depth profiles of water and water binding substances in the stratum corneum determined by Raman spectroscopy between the cheek and volar forearm: effects of age, seasonal changes and artificial forced hydration. Br J Dermatol 158:251–260PubMedCrossRefGoogle Scholar
  47. 47.
    Chrit L, Bastien P, Biatry B et al (2007) In vitro and in vivo confocal Raman study of human skin hydration: assessment of a new moisturizing agent, pMPC. Biopolymers 85(4):359–369PubMedCrossRefGoogle Scholar
  48. 48.
    Crowther JM, Sieg A, Blenkiron P et al (2008) Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Br J Dermatol 159:567–577PubMedGoogle Scholar
  49. 49.
    Naito S, Min YK, Osanai O et al (2008) In vivo measurement of human dermis by 1064 nm-excited fiber Raman spectroscopy. Skin Res Technol 14:18–25PubMedGoogle Scholar
  50. 50.
    Bielfeldt S, Schoder V, Ely U et al (2009) Assessment of human stratum corneum thickness and its barrier properties by in-vivo confocal Raman spectroscopy. IFSCC Mag 12:9–15Google Scholar
  51. 51.
    Baldwin K, Batchelder D (2001) Confocal Raman microspectroscopy through a planar interface. Appl Spectrosc 55:517–524CrossRefGoogle Scholar
  52. 52.
    Tfayli A, Piot O, Manfait M (2008) Confocal Raman microspectroscopy on excised human skin: uncertainties in depth profiling and mathematical correction applied to dermatological drug permeation. J Biophotonics 1:140–153PubMedCrossRefGoogle Scholar
  53. 53.
    Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol 7:1–9PubMedCrossRefGoogle Scholar
  54. 54.
    Ya-Xian Z, Suetake T, Tagami H (1999) Number of cell layers of the stratum corneum in normal skin – relationship to the anatomical locations on the body, age, sex and physical parameters. Arch Dermatol Res 291:555–559PubMedCrossRefGoogle Scholar
  55. 55.
    Gambichler T, Boms S, Stacker M et al (2006) Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison. J Eur Acad Dermatol Venereol 20(7):791–795PubMedGoogle Scholar
  56. 56.
    Lademann J, Otberg N, Richter H et al (2007) Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis. Skin Res Technol 13(2):119–132PubMedCrossRefGoogle Scholar
  57. 57.
    Norlen L (2006) Stratum corneum keratin structure, function and formation – a comprehensive review. Int J Cosmet Sci 28(6):397–425PubMedCrossRefGoogle Scholar
  58. 58.
    Wu J, Polefka TG (2008) Confocal Raman microspectroscopy of stratum corneum: a pre-clinical validation study. Int J Cosmet Sci 30:47–56PubMedCrossRefGoogle Scholar
  59. 59.
    Matts PJ, Gray J, Rawlings AV (2005) The ‘dry skin cycle’ – a new model of dry skin and mechanisms for intervention (International congress and symposium series), vol 256. The Royal Society of Medicine Press Ltd, London, pp 1–38Google Scholar
  60. 60.
    Loden M (2005) The clinical benefit of moisturizers. JEADV 19:672–688PubMedGoogle Scholar
  61. 61.
    Breternitz M, Kowatski D, Langenauer M et al (2008) Placebo controlled, double blind, randomized prospective study of a glycerol-based emollient on eczematous skin in atopic dermatitis: biophysical and clinical evaluation. Skin Pharmacol Physiol 21:39–45PubMedCrossRefGoogle Scholar
  62. 62.
    Summers RS, Summers B, Chandar P et al (1996) The effect of lipids with and without humectants on skin xerosis. J Soc Cosmet Chem 47:27–39Google Scholar
  63. 63.
    Rawlings AV, Watkinson A, Hope J et al (1995) The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch Dermatol Res 287:457–464PubMedCrossRefGoogle Scholar
  64. 64.
    Held E, Sveinsdottir S, Agner T (1999) Effect of long term use of moisturizer on skin hydration, barrier function and susceptibility to irritants. Acta Derm Venereol 79:49–51PubMedCrossRefGoogle Scholar
  65. 65.
    Zachariae C, Held E, Johansen JD et al (2003) Effect of a moisturizer on skin susceptibility to NiCl2. Acta Derm Venereol 83:93–97PubMedCrossRefGoogle Scholar
  66. 66.
    Berardesca E, Distante F, Vignoli GP et al (1997) Alpha hydroxyacids modulate stratum corneum barrier function. Br J Dermatol 137:934–938PubMedCrossRefGoogle Scholar
  67. 67.
    Buraczewska I, Berne B, Lindberg M et al (2007) Changes in skin barrier function following long-term treatment with moisturizers, a randomized controlled trial. Br J Dermatol 156:492–498PubMedCrossRefGoogle Scholar
  68. 68.
    Barany E, Lindberg M, Loden M (2000) Unexpected skin barrier influence from non-ionic emulsifiers. Int J Pharm 195:189–195PubMedCrossRefGoogle Scholar
  69. 69.
    Fluhr JW, Gloor M, Lehmann L et al (1999) Glycerol accelerates recovery of barrier function in vivo. Acta Derm Venereol 79:418–421PubMedCrossRefGoogle Scholar
  70. 70.
    Loden M, Andersson AC, Andersson C et al (2001) Instrumental and dermatologist evaluation of the effect of glycerine and urea on dry skin in atopic dermatitis. Skin Res Technol 7:209–213PubMedCrossRefGoogle Scholar
  71. 71.
    Rawlings AV, Conti A, Verdejo P et al (1996) The effect of lactic acid isomers on epidermal lipid biosynthesis and stratum corneum barrier function. Arch Dermatol Res 288:383–390PubMedCrossRefGoogle Scholar
  72. 72.
    Norlen L, Emilson A, Forslind B (1997) Stratum corneum swelling. Biophysical and computer assisted quantitative assessments. Arch Dermatol Res 289:506–513PubMedCrossRefGoogle Scholar
  73. 73.
    Richter T, Muller JH, Schwarz UD et al (2001) Investigation of the swelling of human skin cells in liquid media by tapping mode scanning force microscopy. Appl Phys A A72:S125–S128CrossRefGoogle Scholar
  74. 74.
    Bouwstra JA, de Graaff A, Gooris GS et al (2003) Water distribution and related morphology in human stratum corneum at different hydration levels. J Invest Dermatol 120:750–758PubMedCrossRefGoogle Scholar
  75. 75.
    Caussin J, Groenink HWW, de Graaff AM et al (2007) Lipophilic and hydrophilic moisturizers show different actions on human skin as revealed by cryo scanning electron microscopy. Exp Dermatol 16:891–898PubMedCrossRefGoogle Scholar
  76. 76.
    Orth DS, Appa Y, Contard P et al (1995) Effect of high glycerin moisturizers on the ultrastructure of the stratum corneum. Poster at the 53rd annual meeting of the American Academy of Dermatology, New Orleans, Feb 1995Google Scholar
  77. 77.
    Orth DS, Appa Y (2000) Glycerine: a natural ingredient for moisturizing skin. In: Loden M, Maibach HI (eds) Dry skin and moisturizers: chemistry and function. CRC Press, Boca RatonGoogle Scholar
  78. 78.
    Fluhr JW, Bornkessel A, Berardesca E (2006) Glycerol-just a moisturizer? Biological & biophysical effects. In: Loden M, Maibach HI (eds) Dry skin and moisturizers, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  79. 79.
    Jacobson EL, Kim H, Kim M et al (2007) A topical lipophilic niacin derivative increases NAD, epidermal differentiation and barrier function in photodamaged skin. Exp Dermatol 16(6):490–499PubMedCrossRefGoogle Scholar
  80. 80.
    Loden M, Wessman C (2001) The influence of a cream containing 20% glycerin and its vehicle on skin barrier properties. Int J Cosmet Sci 23:115–119PubMedCrossRefGoogle Scholar
  81. 81.
    Fluhr JW, Mao-Qiang M, Brown BE et al (2003) Glycerol regulates stratum corneum hydration in sebaceous gland deficient (Asebia) mice. J Invest Dermatol 120:728–737PubMedCrossRefGoogle Scholar
  82. 82.
    Choi EH, Man MQ, Wang F et al (2005) Is endogenous glycerol a determinant of stratum corneum hydration in humans? J Invest Dermatol 125:288–293PubMedGoogle Scholar
  83. 83.
    Crowther JM, Matts PJ, publication in preparationGoogle Scholar
  84. 84.
    Kaczvinsky JR, publication in preparationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jonathan M. Crowther
    • 1
  • Paul J. Matts
    • 1
  • Joseph R. Kaczvinsky
    • 2
  1. 1.Beauty and Grooming, Procter & Gamble Technical Centres Ltd., Rusham Park Technical CentreEgham, SurreyUK
  2. 2.Clinical Research and Biometrics, The Procter and Gamble Company, Sharon Woods Technical CentreCincinnatiUSA

Personalised recommendations