Advertisement

Ungual Formulations: Topical Treatment of Nail Diseases

  • Kenneth A. Walters
Chapter

Abstract

The human nail can be afflicted by several disease states. Approximately 50% of all problems result from fungal infections, and brittle nail syndrome affects approximately 20% of the population. For the topical treatment of nail diseases, however, it is a prime requirement that the active ingredient is capable of penetrating into and diffusing though the nail plate. Experimental techniques for investigation of the penetration and distribution of chemicals into and through the nail plate have demonstrated that it is possible to deliver drugs to the nail following topical application. This research has led the development of newer more effective topical products and regimens for treatment of onychomycoses and other nail diseases. In this chapter, nail structure and chemical composition will be discussed together with an overview of the permeation of molecules through the nail plate, and this will be followed by a review of selected clinical studies designed to determine the efficacy of topical treatment for nail diseases.

Keywords

Stratum Corneum Thioglycolic Acid Nail Plate Mycological Cure Human Nail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alpsov E, Yilmaz E, Basaran E (1996) Intermittent therapy with terbinafine for dermatophyte toe-­onychomycosis: a new approach. J Dermatol 23:259–262Google Scholar
  2. 2.
    Baden HP, Goldsmith LA, Fleming B (1973) A comparative study of the physicochemical properties of human keratinized tissues. Biochim Biophys Acta 322:269–278PubMedGoogle Scholar
  3. 3.
    Baran R, Coquard F (2005) Combination of fluconazole and urea in a nail lacquer for treating onychomycosis. J Dermatolog Treat 16:52–55PubMedCrossRefGoogle Scholar
  4. 4.
    Bauer F, Stevens B (1983) Investigations of trace metal content of normal and diseased nails. Australas J Dermatol 24:127–129PubMedCrossRefGoogle Scholar
  5. 5.
    Brown MB, Khengar RH, Turner RB, Forbes B, Traynor MJ, Evans CRG, Jones SA (2009) Overcoming the nail barrier: a systematic investigation of ungula chemical penetration enhancement. Int J Pharm 370:61–67PubMedCrossRefGoogle Scholar
  6. 6.
    Burch GE, Winsor T (1946) Diffusion of water through dead plantar, palmar and torsal human skin and through toe nails. Arch Derm Syphilol 53:39–41PubMedCrossRefGoogle Scholar
  7. 7.
    Cashman MW, Sloan SB (2010) Nutrition and nail disease. Clin Dermatol 28:420–425PubMedCrossRefGoogle Scholar
  8. 8.
    Ceschin-Roques CG, Hanel H, Pruja-Bougaret SM, Luc J, Vandermander J, Michel G (1991) Ciclopirox nail lacquer 8%: in vivo penetration into and through nails and in vitro effect on pig skin. Skin Pharmacol 4:89–94PubMedCrossRefGoogle Scholar
  9. 9.
    de Vocht ML, Reviakine I, Wösten HAB, Brisson A, Wessels JGH, Robillard GT (2000) Structural and functional role of the disulfide bridges in the hydrophobin SC3. J Biol Chem 275:28428–28432PubMedCrossRefGoogle Scholar
  10. 10.
    Donnelly RF, McCarron PA, Lightowler JM, Woolfson AD (2005) Bioadhesive patch-based delivery of 5-aminolevulinic acid to the nail for photodynamic therapy of onychomycosis. J Control Release 103:381–392PubMedCrossRefGoogle Scholar
  11. 11.
    Dubini F, Bellotti MG, Frangi A, Monti D, Saccomani L (2005) In vitro antimycotic activity and nail permeation models of a piroctone olamine (octopirox) containing transungual water soluble technology. Arzneimittelforschung 55:478–483PubMedGoogle Scholar
  12. 12.
    Dutet J, Delgado-Charro MB (2009) In vivo transungual iontophoresis: effect of DC current application on ionic transport and on transonychial water loss. J Control Release 140:117–125PubMedCrossRefGoogle Scholar
  13. 13.
    Dutet J, Delgado-Charro MB (2010) Transungual iontophoresis of lithium and sodium: effect of pH and co-ion competition on cationic transport numbers. J Control Release 144:168–174PubMedCrossRefGoogle Scholar
  14. 14.
    Dutet J, Delgado-Charro MB (2010) Electroosmotic transport of mannitol across human nail during constant current iontophoresis. J Pharm Pharmacol 62:721–729PubMedGoogle Scholar
  15. 15.
    Elewski E (1998) Onychomycosis: pathogenesis, diagnosis, and management. Clin Microbiol Rev 11:415–429PubMedGoogle Scholar
  16. 16.
    Elkeeb R, AliKhan A, Elkeeb L, Hui X, Maibach HI (2010) Transungual drug delivery: current status. Int J Pharm 384:1–8PubMedCrossRefGoogle Scholar
  17. 17.
    Farran L, Ennos AR, Eichhorn J (2008) The effect of humidity on the fracture properties of human fingernails. J Exp Biol 211:3677–3681PubMedCrossRefGoogle Scholar
  18. 18.
    Franz TJ (1992) Absorption of amorolfine through human nail. Dermatology 184(Suppl 1):18–20PubMedCrossRefGoogle Scholar
  19. 19.
    Gunt HB, Kasting GB (2007) Equilibrium water sorption characteristics of the human nail. J Cosmet Sci 58:1–9PubMedGoogle Scholar
  20. 20.
    Gunt HB, Kasting GB (2007) Effect of hydration on the permeation of ketoconazole through human nail plate in vitro. Eur J Pharm Sci 32:254–260PubMedCrossRefGoogle Scholar
  21. 21.
    Gunt HB, Miller MA, Kasting GB (2007) Water diffusivity in human nail plate. J Pharm Sci 96:3352–3362PubMedCrossRefGoogle Scholar
  22. 22.
    Gupta AK, Fleckman P, Baran R (2000) Ciclopirox nail lacquer topical solution 8% in the treatment of toenail onychomycosis. J Am Acad Dermatol 43(4 Suppl):S70–S80PubMedCrossRefGoogle Scholar
  23. 23.
    Gupta AK, Lynde CW, Barber K (2006) Pharmacoeconomic assessment of ciclopirox topical solution, 8%, oral terbinafine, and oral itraconazole for onychomycosis. J Cutan Med Surg 10(Suppl 2):S54–S62PubMedGoogle Scholar
  24. 24.
    Hao J, Li SK (2008) Transungual iontophoretic transport of polar neutral and positively charged model permeants: effects of electrophoresis and electroosmosis. J Pharm Sci 97:893–905PubMedCrossRefGoogle Scholar
  25. 25.
    Hao J, Smith KA, Li SK (2008) Chemical method to enhance transungual transport and iontophoresis efficiency. Int J Pharm 357:61–69PubMedCrossRefGoogle Scholar
  26. 26.
    Hao J, Smith KA, Li SK (2009) Iontophoretically enhanced ciclopirox delivery into and across human nail plate. J Pharm Sci 98:3608–3616PubMedCrossRefGoogle Scholar
  27. 27.
    Hay R (2005) Literature review. Onychomycosis. J Eur Acad Dermatol Venereol 19(Suppl 1):1–7PubMedCrossRefGoogle Scholar
  28. 28.
    Hui X, Shainhouse Z, Tanojo H, Anigbogu A, Markus GE, Maibach HI, Wester RC (2002) Enhanced human nail drug delivery: nail inner drug content assayed by new unique method. J Pharm Sci 91:189–195PubMedCrossRefGoogle Scholar
  29. 29.
    Hui X, Chan TCK, Barbadillo S, Lee C, Maibach HI, Wester RC (2003) Enhanced econazole penetration into human nail by 2-N-nonyl-1,3-dioxolane. J Pharm Sci 92:142–148PubMedCrossRefGoogle Scholar
  30. 30.
    Hui X, Wester RC, Barbadillo S, Lee C, Patel B, Wortzmman M, Gans EH, Maibach HI (2004) Ciclopirox delivery into the human nail plate. J Pharm Sci 93:2545–2548PubMedCrossRefGoogle Scholar
  31. 31.
    Hui X, Hornby SB, Wester RC, Barbadillo S, Appa Y, Maibach H (2007) In vitro human nail penetration and kinetics of panthenol. Int J Cosmet Sci 29:277–282PubMedCrossRefGoogle Scholar
  32. 32.
    Kamp H, Tietz H-J, Lutz M, Piazena H, Sowyrda P, Lademann J, Blume-Peytavi U (2005) Antifungal effect of 5-aminolevulinic acid PDT in Trichophyton rubrum. Mycoses 48:101–107PubMedCrossRefGoogle Scholar
  33. 33.
    Khengar RH, Jones SA, Turner RB, Forbes B, Brown MB (2007) Nail swelling as a pre-formulation screen for the selection and optimisation of ungual penetration enhancers. Pharm Res 24:2207–2212PubMedCrossRefGoogle Scholar
  34. 34.
    Khengar RH, Brown MB, Turner RB, Traynor MJ, Holt KB, Jones SA (2010) Free radical facilitated damage of ungual keratin. Free Radic Biol Med 49:865–871PubMedCrossRefGoogle Scholar
  35. 35.
    Kien CL, Ganther HE (1983) Manifestations of chronic selenium deficiency in a child receiving total parenteral nutrition. Am J Clin Nutr 37:319–328PubMedGoogle Scholar
  36. 36.
    Kligman AM (1965) Topical pharmacology and toxicology of dimethylsulfoxide. J Am Med Assoc 193:796–804CrossRefGoogle Scholar
  37. 37.
    Kobayashi Y, Miyamoto M, Sugibayashi K, Morimoto Y (1998) Enhancing effect of N-acetyl-L-cysteine or 2-mercaptoethanol on the in vitro permeation of 5-fluorouracil or tolnaftate through the human nail plate. Chem Pharm Bull 46:1797–1802PubMedCrossRefGoogle Scholar
  38. 38.
    Kobayashi Y, Komatsu T, Sumi M, Numajiri S, Miyamoto M, Kobayashi D, Sugibayashi K, Morimoto Y (2004) In vitro permeation of several drugs through the human nail plate: relationship between physicochemical properties and nail permeability of drugs. Eur J Pharm Sci 21:471–477PubMedCrossRefGoogle Scholar
  39. 39.
    Malay DS, Yi SY, Borowsky P, Downey MS, Mlodzienski AJ (2009) Efficacy of debridement alone versus debridement combined with topical antifungal nail lacquer for the treatment of pedal onychomycosis: a randomized, controlled trial. J Foot Ankle Surg 48:294–307PubMedCrossRefGoogle Scholar
  40. 40.
    Mertin D, Lippold BC (1997) In vitro permeability of the human nail and of a keratin membrane from bovine hooves: influence of the partition coefficient octanol/water and the water solubility of drugs on their permeability and maximum flux. J Pharm Pharmacol 49:30–34PubMedCrossRefGoogle Scholar
  41. 41.
    Mertin D, Lippold BC (1997) In vitro permeability of the human nail and of a keratin membrane from bovine hooves: penetration of chloramphenicol from lipophilic vehicles and a nail lacquer. J Pharm Pharmacol 49:241–245PubMedCrossRefGoogle Scholar
  42. 42.
    Mertin D, Lippold BC (1997) In vitro permeability of the human nail and of a keratin membrane from bovine hooves: prediction of the penetration rate of antimycotics through the nail plate and their efficacy. J Pharm Pharmacol 49:866–872PubMedCrossRefGoogle Scholar
  43. 43.
    Mohorcic M, Torkar A, Friedrich J, Kristl J, Murdan S (2007) An investigation into keratolytic enzymes to enhance ungual drug delivery. Int J Pharm 332:196–201PubMedCrossRefGoogle Scholar
  44. 44.
    Monti D, Saccomani L, Chetoni P, Burgalassi S, Saetttone MF, Mailland F (2005) In vitro transungual permeation of ciclopirox from a hydroxypropyl chitosan-based, water-soluble nail lacquer. Drug Dev Ind Pharm 31:11–17PubMedGoogle Scholar
  45. 45.
    Monti D, Saccomani L, Chetoni P, Burgalassi S, Senesi S, Ghelardi E, Mailland F (2010) Hydrosoluble medicated nail lacquers: in vitro drug permeation and corresponding antimycotic activity. Br J Dermatol 162:311–317PubMedCrossRefGoogle Scholar
  46. 46.
    Monti D, Saccomani L, Chetoni P, Burgalassi S, Tampucci S, Mailland F (2011) Validation of bovine hoof slices as model for infected human toenails: in vitro ciclopirox transungual permeation. Br J Dermatol. doi:10.1111/j.1365-2133.2011. 10303.x. [Epub ahead of print]Google Scholar
  47. 47.
    Murdan S (2008) Enhancing the nail plate permeability of topically applied drugs. Expert Opin Drug Deliv 5:1–16CrossRefGoogle Scholar
  48. 48.
    Murthy SN, Vaka SRK, Sammeta SM, Nair AB (2009) TransScreen-NTM: method for rapid screening of trans-ungual drug delivery enhancers. J Pharm Sci 98:4264–4271PubMedCrossRefGoogle Scholar
  49. 49.
    Nair AB, Chakraborty B, Murthy SN (2010) Effect of polyethylene glycols on the trans-ungual delivery of terbinafine. Curr Drug Deliv 7:407–414PubMedCrossRefGoogle Scholar
  50. 50.
    Nakano N, Hiruma M, Shiraki Y, Chen X, Porgpermdee S, Ikeda S (2006) Combination of pulse therapy with terbinafine tablets and topical terbinafine cream for the treatment of dermatophyte onychomycosis: a pilot study. J Dermatol 33:753–758PubMedCrossRefGoogle Scholar
  51. 51.
    Quintanar-Guerrero D, Ganem-Quintanar A, Tapia-Olguin P, Kalia YN, Buri P (1998) The effect of keratolytic agents on the permeability of three imidazole antimycotic drugs through the human nail. Drug Dev Ind Pharm 24:685–690PubMedCrossRefGoogle Scholar
  52. 52.
    Rigopoulos D, Katoulis AC, Ionnides D, Georgaia S, Kalogeromitros D, Bolbasis I, Karistinou A, Christofidou E, Polydorou D, Balkou P, Fragouli E, Katsambas AD (2003) A randomised trial of amorolfine 5% solution nail lacquer in association with itraconazole pulse therapy compared with itraconazole alone in the treatment of Candida fingernail onychomycosis. Br J Dermatol 149:151–156PubMedCrossRefGoogle Scholar
  53. 53.
    Rigopoulos D, Gregoriou S, Danielli CR, Belyayeva H, Larios G, Verra P, Stamou C, Kontochristopoulos G, Avgerinou G, Katsambas A (2009) Treatment of nail psoriasis with a two-compound formulation of calcipotriol plus betamethasone dipropionate ointment. Dermatology 218:338–341PubMedCrossRefGoogle Scholar
  54. 54.
    Runne U, Orfanos CE (1981) The human nail – structure, growth and pathological changes. Curr Probl Dermatol 9:102–149PubMedGoogle Scholar
  55. 55.
    Sanchez Regana M, Martin Ezquerra G, Umbert Millet P, Llambi Mateos F (2005) Treatment of nail psoriasis with 8% clobetasol nail lacquer: positive experience in 10 patients. J Eur Acad Dermatol Venereol 19:573–577PubMedCrossRefGoogle Scholar
  56. 56.
    Scher RK, Stiller M, Zhu YI, 5 (2001) Tazarotene 0.1% gel in the treatment of fingernail psoriasis: a double-blind, randomised, vehicle-controlled study. Cutis 68:355–358PubMedGoogle Scholar
  57. 57.
    Sherber NS, Hoch AM, Coppola CA, Carter EL, Chang HL, Barsanti FR, Mackay-Wiggan JM (2011) Efficacy and safety study of tazarotene cream 0.1% for the treatment of brittle nail syndrome. Cutis 87:96–103PubMedGoogle Scholar
  58. 58.
    Shivakumar HN, Vaka SR, Madhav NV, Chandra H, Murthy SN (2010) Bilayered nail lacquer of terbinafine hydrochloride for treatment of onychomycosis. J Pharm Sci 99:4267–4276PubMedCrossRefGoogle Scholar
  59. 59.
    Smijs TGM, Schuitmaker HJ (2003) Photodynamic inactivation of the dermatophyte Trichophyton rubrum. Photochem Photobiol 77:556–560PubMedCrossRefGoogle Scholar
  60. 60.
    Spruit D (1971) Measurement of water vapor loss through human nail in vivo. J Invest Dermatol 56:359–361PubMedCrossRefGoogle Scholar
  61. 61.
    Stern DK, Diamantis S, Smith E, Wei H, Gordon M, Muigai W, Moshier E, Lebwohl M, Spuls P (2007) Water content and other aspects of brittle versus normal fingernails. J Am Acad Dermatol 57:31–36PubMedCrossRefGoogle Scholar
  62. 62.
    Stuttgen G, Bauer E (1982) Bioavailability, skin and nail penetration of topically applied antimycotics. Mycosen 25:74–80CrossRefGoogle Scholar
  63. 63.
    Susilo R, Korting HC, Greb W, Strauss UP (2006) Nail penetration of sertaconazole with a sertaconazole-containing nail patch formulation. Am J Clin Dermatol 7:259–262PubMedCrossRefGoogle Scholar
  64. 64.
    Traynor MJ, Turner RB, Evans CR, Khengar RH, Jones SA, Brown MB (2010) Effect of a novel penetration enhancer on the ungula permeation of two antifungal agents. J Pharm Pharmacol 62:730–737PubMedGoogle Scholar
  65. 65.
    Ujiie H, Shibaki A, Akiyama M, Shimizu H (2010) Successful treatment of nail lichen planus with topical tacrolimus. Acta Derm Venereol 90:218–219PubMedCrossRefGoogle Scholar
  66. 66.
    Vaka SR, Murthy SN, O’Haver JH, Repka MA (2011) A platform for predicting and enhancing model drug delivery across the human nail plate. Drug Dev Ind Pharm 37:72–79PubMedCrossRefGoogle Scholar
  67. 67.
    van de Kerkhof PC, Pasch MC, Scher RK, Kerscher M, Gieler U, Haneke E, Fleckman P (2005) Brittle nail syndrome: a pathogenesis-based approach with a proposed grading system. J Am Acad Dermatol 53:644–651PubMedCrossRefGoogle Scholar
  68. 68.
    van Hoogdalem EJ, van den Hoven WE, Terpstra IJ, van Zijtveld J, Verschoor JSC, Visser JN (1997) Nail penetration of the antifungal oxiconazole after repeated topical application in healthy volunteers, and the effect of acetylcysteine. Eur J Pharm Sci 5:119–127CrossRefGoogle Scholar
  69. 69.
    Vejnovic I, Huonder C, Betz G (2010) Permeation studies of novel terbinafine formulations containing hydrophobins through human nails in vitro. Int J Pharm 397:67–76PubMedCrossRefGoogle Scholar
  70. 70.
    Vejnovic I, Simmler L, Betz G (2010) Investigation of different formulations for drug delivery through the nail plate. Int J Pharm 386:185–194PubMedCrossRefGoogle Scholar
  71. 71.
    Walters KA, Flynn GL, Marvel JR (1981) Physicochemical characterization of the human nail: I. Pressure sealed apparatus for measuring nail plate permeabilities. J Invest Dermatol 76:76–79PubMedCrossRefGoogle Scholar
  72. 72.
    Walters KA, Flynn GL, Marvel JR (1983) Physicochemical characterization of the human nail: permeation pattern for water and the homologous alcohols and differences with respect to the stratum corneum. J Pharm Pharmacol 35:28–33PubMedCrossRefGoogle Scholar
  73. 73.
    Walters KA, Flynn GL, Marvel JR (1985) Penetration of the human nail: the effects of vehicle pH on the permeation of miconazole. J Pharm Pharmacol 37:498–499PubMedCrossRefGoogle Scholar
  74. 74.
    Walters KA, Flynn GL, Marvel JR (1985) Physicochemical characterization of the human nail: solvent effects on the permeation of homologous alcohols. J Pharm Pharmacol 37:771–775PubMedCrossRefGoogle Scholar
  75. 75.
    Wessel S, Gniadecka M, Jemec GB, Wulf HC (1999) Hydration of human nails investigated by NIR-FT-Raman spectroscopy. Biochim Biophys Acta 1433:210–216PubMedCrossRefGoogle Scholar
  76. 76.
    Wösten HA, de Vocht ML (2000) Hydrophobins, the fungal coat unravelled. Biochim Biophys Acta 1469:79–86PubMedGoogle Scholar
  77. 77.
    Xiao P, Zheng X, Imhof RE, Hirata K, McAuley WJ, Mateus R, Hadgraft J, Lane ME (2011) Opto-thermal transient emission radiometry (OTTER) to image diffusion in nails in vivo. Int J Pharm 406:111–113PubMedCrossRefGoogle Scholar
  78. 78.
    Sardana K, Garg VK, Manchanda V, Rajpal M (2006). Congenital candidal onychomycoses: effective cure with ciclopirox olamine 8% nail lacquer. Br J Dermatol 154:573–575Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.An-eX Analytical Services LtdCardiffUK

Personalised recommendations