Biomechanics of the Barrier Function of Human Stratum Corneum

Chapter

Abstract

In this chapter, we review new approaches to characterize and model the fundamental biomechanics of human stratum corneum (SC) and skin damage processes. We describe how the drying stresses that develop in SC provide a mechanical driving force for dry skin damage such as chapping and cracking. We review techniques to quantitatively characterize these stresses after environmental conditioning and application of moisturizing and damaging treatments. We discuss the critical effect of water content on the mechanical properties of SC, and demonstrate the relationship between the SC drying stress and water in the drying environment. Finally, using our biomechanical model, we demonstrate how damaging treatments enhance and moisturizing treatments alleviate the propensity for dry skin damage.

Keywords

Stratum Corneum Stratum Corneum Lipid Topical Coating Substrate Curvature Intercellular Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Harding CR (2004) The stratum corneum: structure and function in health and disease. Dermatol Ther 17:6–15PubMedCrossRefGoogle Scholar
  2. 2.
    Harding CR, Long S, Richardson J, Rogers J, Zhang Z, Rawlings AV (2003) The cornified envelope: an important marker of stratum corneum in healthy and dry skin. J Cosmet Sci 25:157–163CrossRefGoogle Scholar
  3. 3.
    Mustoe TA, Cooter RD, Gold MH, Hobbs FD, Ramelet AA, Shakespeare PG et al (2002) International clinical recommendations on scar management. Plast Reconstr Surg 110:560–571PubMedCrossRefGoogle Scholar
  4. 4.
    Longacre JJ, Berry HK, Basom CR, Townsend SF (1976) The effects of Z plasty on hypertrophic scars. Scand J Plast Reconstr Surg 10:113–128PubMedCrossRefGoogle Scholar
  5. 5.
    Scars BM (1998) Can they be minimised? Aust Fam Physician 27:275–278Google Scholar
  6. 6.
    Edlich RF, Carl BA (1998) Predicting scar formation: from ritual practice (Langer’s lines) to scientific discipline (static and dynamic skin tensions). J Emerg Med 16:759–760PubMedCrossRefGoogle Scholar
  7. 7.
    Atkinson JM, Barnett AG, McGrath DJ, Rudd M (2005) A randomized controlled trial to determine the efficacy of paper tape in preventing hypertrophic scar formation. Plast Reconstr Surg 116:1648–1656PubMedCrossRefGoogle Scholar
  8. 8.
    Gaul LE, Underwood GB (1952) Relation of dew point and barometric pressure to chapping of normal skin. J Invest Dermatol 19(1):9–19PubMedCrossRefGoogle Scholar
  9. 9.
    Ananthapadmanabhan KP, Moore DJ, Subramanyan K, Misra M, Meyer F (2004) Cleansing without compromise: the impact of cleansers on the skin barrier and the technology of mild cleansing. Dermatol Ther 17(Suppl 1):16–25PubMedCrossRefGoogle Scholar
  10. 10.
    Subramanyan KF (2007) Advances in the materials science of skin: a composite structure with multiple functions. MRS Bull 32(10):770CrossRefGoogle Scholar
  11. 11.
    Rudikoff D (1998) The effect of dryness on skin. Clin Dermatol 16:99–107PubMedCrossRefGoogle Scholar
  12. 12.
    Rawlings AV, Matts PJ (2005) Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol 124:1099–1110PubMedCrossRefGoogle Scholar
  13. 13.
    Harding CR, Watkinson A, Rawlings AV, Scott IR (2000) Dry skin, moisturization and corneodesmolysis. Int J Cosmet Sci 1:21–52CrossRefGoogle Scholar
  14. 14.
    Rhein L, Robbins C, Fernee K, Cantore R (1986) Surfactant structure effects on swelling of isolated human stratum corneum. J Soc Cosmet Chem 37:125–139Google Scholar
  15. 15.
    Hutchinson JW, Suo Z (1992) Mixed mode cracking in layered materials. Adv Appl Mech 29:63–191CrossRefGoogle Scholar
  16. 16.
    Levi K, Weber RJ, Do JQ, Dauskardt RH (2009) Drying stress and damage processes in human stratum corneum. Int J Cosmet Sci 32(4):276–293PubMedCrossRefGoogle Scholar
  17. 17.
    Wu KS, Van Osdol WW, Dauskardt RH (2005) Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. Biomaterials 27(5):785–795PubMedCrossRefGoogle Scholar
  18. 18.
    Wu KS, Li J, Ananthapadmanabhan KP, Dauskardt RH (2006) Time-dependent intercellular delamination of human stratum corneum. J Mater Sci 42(21):8986CrossRefGoogle Scholar
  19. 19.
    Wu KS, Stefik MM, Ananthapadmanabhan KP, Dauskardt RH (2006) Graded delamination behavior of human stratum corneum. Biomaterials 27:5861–5870PubMedCrossRefGoogle Scholar
  20. 20.
    Mukherjee S, Richardson J, Margosiak M, Lei X (1999) Understanding dry rough skin: a physical basis for the effects of dry environment and surfactant treatment on corneum fracture. In: Lal M, Lillford PJ, Naik VM, Prakash V (eds) Supramolecular and colloidal structures in biomaterials and biosubstrates – Proceedings of the fifth royal society-Unilever Indo-UK forum in materials science and engineering, held in Mysore, India, on January 10–14, 1999. World Scientific Publishing Company, Singapore, pp 306–324Google Scholar
  21. 21.
    Flinn PA, Gardner DS, Nix WD (1987) Measurements and interpretation of stress in aluminum-based metallization as a function of thermal history. IEEE Trans Electron Dev ED-34(3):689–699CrossRefGoogle Scholar
  22. 22.
    Gardner DS, Flinn PA (1988) Mechanical stress as a function of temperature in aluminum films. IEEE Trans Electron Dev 35(12):2160–2169CrossRefGoogle Scholar
  23. 23.
    Moske M, Samwer K (1988) New UHV dilatometer for precise measurement of internal stresses in thin binary-alloy films from 20–750K. Rev Sci Instrum 59:2012CrossRefGoogle Scholar
  24. 24.
    Bader S, Kalaugher EM, Arzt E (1995) Comparison of mechanical properties and microstructure of Al (1 wt. % Si) and Al (1 wt. % Si, 0.5 wt. % Cu) thin films. Thin Solid Films 262:175–184CrossRefGoogle Scholar
  25. 25.
    Keller RM, Baker SP, Arzt E (1998) Quantitative analysis of strengthening mechanisms in thin cu films: effects of film thickness, grain size, and passivation. J Mater Res 13(5):1307–1317CrossRefGoogle Scholar
  26. 26.
    Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc Lond B Biol 82(553):172Google Scholar
  27. 27.
    Anderson RL, Cassidy JM, Hansen JR, Yellin W (1973) Hydration of stratum corneum. Biopolymers 12(12):2789–2802PubMedCrossRefGoogle Scholar
  28. 28.
    Liron Z, Wright RL, McDougal JN (1994) Water diffusivity in porcine stratum corneum measured by a thermal gravimetric analysis technique. J Pharm Sci 83(4):457–462PubMedCrossRefGoogle Scholar
  29. 29.
    Kasting GB, Barai ND (2003) Equilibrium water sorption in human stratum corneum. J Pharm Sci 92(8):1624–1631PubMedCrossRefGoogle Scholar
  30. 30.
    Potts RO, Guzek DB, Harriss RR, McKie JE (1985) A non invasive, in vivo, technique to quantitatively measure water concentration of the stratum corneum using attenuated total-reflectance infrared spectroscopy. Arch Dermatol Res 277:489–495PubMedCrossRefGoogle Scholar
  31. 31.
    Caspers PJ, Lucassen GW, Wolthuis R, Bruining HA, Puppels GJ (1998) In vitro and in vivo Raman spectroscopy of human skin. Biospectroscopy 4(5 Suppl):9Google Scholar
  32. 32.
    Hansen JR, Yellin W (1972) NMR and infrared spectroscopic studies of stratum corneum hydration. Plenum Press, New YorkGoogle Scholar
  33. 33.
    Gilard V (1998) Measurement of total water and bound water contents in human stratum corneum by in vitro proton nuclear magnetic resonance spectroscopy. Int J Cosmet Sci 20(2):117PubMedCrossRefGoogle Scholar
  34. 34.
    Takahashi M, Kawasaki K, Tanaka M, Ohta S, Tsuda Y (1981) The mechanism of stratum corneum plasticization with water. In: Marks RM, Payne PA (eds) Bioengineering and the skin. MTP Press Ltd, Lancaster, pp 67–73CrossRefGoogle Scholar
  35. 35.
    Jokura Y, Ishikawa S, Tokuda H, Imokawa G (1995) Molecular analysis of elastic properties of the stratum corneum by solid-state 13C-nuclear magnetic resonance spectroscopy. J Invest Dermatol 104(5):806–812PubMedCrossRefGoogle Scholar
  36. 36.
    Guo X, Imhof RE, Rigal J (2001) Spectroscopic study of water-keratin interactions in stratum corneum. Anal Sci 17:s342Google Scholar
  37. 37.
    Leveque JL (2004) Bioengineering of the skin: water and the stratum corneum. CRC Press, Boca RatonGoogle Scholar
  38. 38.
    Barry BW (1988) Action of skin penetration enhancers-the lipid protein partitioning theory. Int J Cosmet Sci 10(6):281PubMedCrossRefGoogle Scholar
  39. 39.
    Wu KS (2006) Mechanical behavior of human stratum corneum: relationship to tissue structure and condition. Stanford University, StanfordGoogle Scholar
  40. 40.
    Ramsing DW (1997) Effect of water on experimentally irritated human skin. Br J Dermatol 136(3):364PubMedCrossRefGoogle Scholar
  41. 41.
    Warner RR, Boissy YL, Lilly NA, Spears MJ, McKillop K, Marshall JL et al (1999) Water disrupts stratum corneum lipid lamellae: damage is similar to surfactants. J Invest Dermatol 113(6):960–966PubMedCrossRefGoogle Scholar
  42. 42.
    Van Hal DA, Jeremiasse E, Junginger HE, Spies F, Bouwstra JA (1996) Structure of fully hydrated human stratum corneum: a freeze-fracture electron microscopy study. J Invest Dermatol 106(1):89–95PubMedCrossRefGoogle Scholar
  43. 43.
    Rawlings A, Harding C, Watkinson A, Banks J, Ackerman C, Sabin R (1995) The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch Dermatol Res 287(5):457–464PubMedCrossRefGoogle Scholar
  44. 44.
    Bouwstra JA, de Graaff A, Gooris GS, Nijsse J, Wiechers JW, van Aelst AC (2003) Water distribution and related morphology in human stratum corneum at different hydration levels. J Invest Dermatol 120(5):750–758PubMedCrossRefGoogle Scholar
  45. 45.
    Wilkes GL, Wildnauer RH (1973) Structure–property relationships of the stratum corneum of human and neonatal rat. II. Dynamic mechanical studies. Biochim Biophys Acta 304(2):276–289PubMedCrossRefGoogle Scholar
  46. 46.
    Wilkes GL, Nguyen AL, Wildnauer R (1973) Structure–property relations of human and neonatal rat stratum corneum. I. Thermal stability of the crystalline lipid structure as studied by X-ray diffraction and differential thermal analysis. Biochim Biophys Acta 304(2):265–275PubMedGoogle Scholar
  47. 47.
    Yuan Y, Verma R (2006) Measuring microelastic properties of stratum corneum. Colloids Surf B 48(1):6CrossRefGoogle Scholar
  48. 48.
    Nicolopoulos CS, Giannoudis PV, Glaros KD, Barbenel JC (1998) In vitro study of the failure of skin surface after influence of hydration and preconditioning. Arch Dermatol Res 290(11):638–640PubMedCrossRefGoogle Scholar
  49. 49.
    Murray FW (1967) On the computation of saturation vapor pressure. J Appl Meteorol 6:203–204CrossRefGoogle Scholar
  50. 50.
    Imokawa G, Akasaki S, Minematsu Y, Kawai M (1989) Importance of intercellular lipids in water-retention properties of the stratum corneum: induction and recovery study of surfactant dry skin. Arch Dermatol Res 281(1):45–51PubMedCrossRefGoogle Scholar
  51. 51.
    Fulmer AW, Kramer GJ (1986) Stratum corneum lipid abnormalities in surfactant-induced dry scaly skin. J Invest Dermatol 86(5):598–602PubMedCrossRefGoogle Scholar
  52. 52.
    Downing DT, Abraham W, Wegner BK, Wilman KW, Marshall JL (1993) Partition of sodium dodecyl sulfate into stratum corneum lipid liposomes. Arch Dermatol Res 285(3):151PubMedCrossRefGoogle Scholar
  53. 53.
    Ananthapadmanabhan KP, Lips A, Vincent C, Meyer F, Caso S, Johnson A et al (2003) pH-induced alterations in stratum corneum properties. Int J Cosmet Sci 25(3):103PubMedCrossRefGoogle Scholar
  54. 54.
    Putterman GJ, Wolsejsza NF, Wolfram MA, Laden K (1977) The effect of detergents on swelling of stratum corneum. J Soc Cosmet Chem 28:521–532Google Scholar
  55. 55.
    Froebe CL, Simion FA, Ohlmeyer H, Rhein LD, Mattai J, Cagan RH (1990) Prevention of stratum corneum lipid phase transitions in vitro by glycerol – an alternative mechanism for skin moisturization. J Soc Cosmet Chem 41:51Google Scholar
  56. 56.
    Fluhr JW, Gloor M, Lehmann L, Lazzerini S, Distante F, Berardesca E (1999) Glycerol accelerates recovery of barrier function in vivo. Acta Derm Venereol 79(6):418–421PubMedCrossRefGoogle Scholar
  57. 57.
    Orth DS, Appa Y (1999) Glycerine: a natural ingredient for moisturizing skin. In: Loden M, Maibach HI (eds) Dry skin and moisturizers. CRC Press, Boca RatonGoogle Scholar
  58. 58.
    Loden M (2003) Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am J Clin Dermatol 4(11):771–788PubMedCrossRefGoogle Scholar
  59. 59.
    Levi K, Dauskardt RH (2010) Application of substrate curvature method to differentiate drying stresses in topical coatings and human stratum corneum. Int J Cosmet Sci 32(4):294–298PubMedCrossRefGoogle Scholar
  60. 60.
    Levi K, Kwan A, Rhines AS, Gorcea M, Moore DJ, Dauskardt RH (2010) Emollient molecule effects on the drying stresses in human stratum corneum. Br J Dermatol 163(4):695–703PubMedCrossRefGoogle Scholar
  61. 61.
    Levi K, Kwan A, Rhines AS, Gorcea M, Moore DJ, Dauskardt RH (2011) Effect of glycerin on drying stresses in human stratum corneum. J Dermatol Sci 61(2):129–131PubMedCrossRefGoogle Scholar
  62. 62.
    Hannon W, Maibach HI (1998) Efficacy of moisturizers assessed through bioengineering techniques. In: Baran R, Maibach HI (eds) Textbook cosmetic dermatology. Taylor & Francis Group, Boca RatonGoogle Scholar
  63. 63.
    Loden M (1992) The increase in skin hydration after application of emollients with different amounts of lipids. Acta Derm Venereol 72:327–330PubMedGoogle Scholar
  64. 64.
    Ghadially R, Halkier-Sorensen L, Elias PM (1992) Effects of petrolatum on stratum corneum structure and function. J Am Acad Dermatol 26(3 Pt 2): 387–396PubMedCrossRefGoogle Scholar
  65. 65.
    O’Goshi KI, Tabata N, Sato Y, Tagami H (2000) Comparative study of the efficacy of various moisturizers on the skin of the ASR miniature swine. Skin Pharmacol Appl Skin Physiol 13(2):120–127PubMedCrossRefGoogle Scholar
  66. 66.
    Draelos ZD (2000) Therapeutic moisturizers. Dermatol Clin 18(4):597–607PubMedCrossRefGoogle Scholar
  67. 67.
    Hara M, Verkman AS (2003) Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc Natl Acad Sci USA 100(12):7360PubMedCrossRefGoogle Scholar
  68. 68.
    Greff, D. (2000). Cosmetic, dermopharmaceutical or veterinary compositions for disinfecting human or animal skin. U.S. Patent 6,123,953, filed February 20, 1997, and issued September 26, 2000Google Scholar
  69. 69.
    Cork MJ (1997) The importance of skin barrier function. J Dermatolog Treat 8:7CrossRefGoogle Scholar
  70. 70.
    Kucharekova M, Van de Kerkhof PCM, Van der Valk PGM (2003) A randomized comparison of an emollient containing skin-related lipids with a petrolatum-based emollient as adjunct in the treatment of chronic hand dermatitis. Contact Dermatitis 48(6):293–299PubMedCrossRefGoogle Scholar
  71. 71.
    Wertz PW, Downing DT (1990) Metabolism of topically applied fatty acid methyl esters in BALB/C mouse epidermis. J Dermatol Sci 1(1):33PubMedCrossRefGoogle Scholar
  72. 72.
    Mao-Qiang M, Brown BE, Wu-Pong S, Feingold KR, Elias PM (1995) Exogenous nonphysiologic vs physiologic lipids: divergent mechanisms for correction of permeability barrier dysfunction. Arch Dermatol 131:809–816PubMedCrossRefGoogle Scholar
  73. 73.
    Hadgraft J (2001) Skin, the final frontier. Int J Pharm 224(1–2):1PubMedCrossRefGoogle Scholar
  74. 74.
    Hadgraft J, Finnin BC (2006) Fundamentals of retarding penetration. In: Smith EW, Maibach HI (eds) Percutaneous penetration enhancers. CRC Press, Boca RatonGoogle Scholar
  75. 75.
    Potts RO, Francoeur ML (1990) Lipid biophysics of water loss through the skin. Proc Natl Acad Sci USA 87:3871–3873PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringStanford UniversityStanfordUSA

Personalised recommendations