Vernix Caseosa and Its Substitutes: Lipid Composition and Physicochemical Properties

  • Marty O. Visscher
  • Steven B. Hoath


Appropriate moisturization is essential for optimum stratum corneum (SC) function [1, 2]. Among the multiple functions of the skin affected by SC water content are desquamation and self-renewal, restoration of barrier integrity after wounding, acid mantle formation, microbial colonization, tactile discrimination, infection control, immunosurveillance, and protection against ultraviolet light and environmental irritants [3]. Operationally, “appropriate” hydration may be defined as: that amount of SC water which optimizes local SC biomechanics while facilitating terminal differentiation, programmed cell death, and orderly corneocyte incorporation into the inner SC with balanced pH-dependent desquamation of the outer SC. Overhydration can cause maceration, disruption of the intercellular lipid bilayers, degradation of desmosomes and creation of amorphous regions, corneocyte swelling, and enhanced molecular transport with increased permeability [4–6], as well as inflammation, irritation, and urticaria [7–12]. Low hydration can cause visible dryness/scaling, aberrant desquamation via reduced enzyme activity, cracking, reduced flexibility, tightness, and itching. On balance, the SC water-handling properties must be sufficiently robust to respond to local, potentially disruptive forces, for example, friction, heat, humidity, bathing, clothing, secretions, and topical product applications [13].


Stratum Corneum Amniotic Fluid Water Vapor Transport Skin Hydration Critical Surface Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blank IH (1952) Factors which influence the water content of the stratum corneum. J Invest Dermatol 18:433–440PubMedGoogle Scholar
  2. 2.
    Gloor M, Bettinger J, Gehring W (1998) Modification of stratum corneum quality by glycerin-containing external ointments. Hautarzt 49(1):6–9PubMedGoogle Scholar
  3. 3.
    Rawlings AK, Leyden JJ (eds) (2009) Skin moisturization, 2nd edn. Informa Healthcare, New YorkGoogle Scholar
  4. 4.
    Warner RR et al (1999) Water disrupts stratum corneum lipid lamellae: damage is similar to surfactants. J Invest Dermatol 113(6):960–966PubMedGoogle Scholar
  5. 5.
    Warner RR, Stone KJ, Boissy YL (2003) Hydration disrupts human stratum corneum ultrastructure. J Invest Dermatol 120(2):275–284PubMedGoogle Scholar
  6. 6.
    Zimmerer RE, Lawson KD, Calvert CJ (1986) The effects of wearing diapers on skin. Pediatr Dermatol 3(2):95–101PubMedGoogle Scholar
  7. 7.
    Halkier-Sorensen, Petersen BH, Thestrup-Pedersen K (1995) Epidemiology of occupational skin diseases in Denmark: notification, recognition and compensation. In: Van der Valk PGM, Maibach HI (eds) The irritant contact dermatitis syndrome. CRC Press, Boca Raton, pp 23–52Google Scholar
  8. 8.
    Hurkmans JF, Bodde HE, Van Driel LM, Van Doorne H, Junginger HE (1985) Skin irritation caused by transdermal drug delivery systems during long-term (5 days) application. Br J Dermatol 112(4):461–467PubMedGoogle Scholar
  9. 9.
    Kligman AM (1996) Hydration injury to human skin. In: van der Valk P, Maibach H (eds) The irritant contact dermatitis syndrome. CRC Press, Boca Raton, pp 187–194Google Scholar
  10. 10.
    Medeiros M Jr (1996) Aquagenic urticaria. J Investig Allergol Clin Immunol 6(1):63–64PubMedGoogle Scholar
  11. 11.
    Rustemeyer T, Frosch PJ (1996) Occupational skin diseases in dental laboratory technicians. (I). Clinical picture and causative factors. Contact Dermatitis 34(2):125–133PubMedGoogle Scholar
  12. 12.
    Willis I (1973) The effects of prolonged water exposure on human skin. J Invest Dermatol 60:166–171PubMedGoogle Scholar
  13. 13.
    Visscher MO, Chatterjee R, Ebel JP, LaRuffa AA, Hoath SB (2002) Biomedical assessment and instrumental evaluation of healthy infant skin. Pediatr Dermatol 19(6):473–481PubMedGoogle Scholar
  14. 14.
    Thakoersing VS, Ponec M, Bouwstra JA (2010) Generation of human skin equivalents under submerged conditions-mimicking the in utero environment. Tissue Eng Part A 16(4):1433–1441PubMedGoogle Scholar
  15. 15.
    Anonymous (2009) Mosby’s medical dictionary. Elsevier, Amsterdam, NetherlandsGoogle Scholar
  16. 16.
    Hoeger PH et al (2002) Epidermal barrier lipids in human vernix caseosa: corresponding ceramide pattern in vernix and fetal skin. Br J Dermatol 146(2):194–201PubMedGoogle Scholar
  17. 17.
    Pickens WL, Warner RR, Boissy YL, Boissy RE, Hoath SB (2000) Characterization of vernix caseosa: water content, morphology, and elemental analysis. J Invest Dermatol 115(5):875–881PubMedGoogle Scholar
  18. 18.
    Rissmann R et al (2006) New insights into ultrastructure, lipid composition and organization of vernix caseosa. J Invest Dermatol 126(8):1823–1833PubMedGoogle Scholar
  19. 19.
    Agorastos T, Hollweg G, Grussendorf EI, Papaloucas A (1988) Features of vernix caseosa cells. Am J Perinatol 5(3):253–259PubMedGoogle Scholar
  20. 20.
    Holbrook KA, Odland GF (1975) The fine structure of developing human epidermis: light, scanning, and transmission electron microscopy of the periderm. J Invest Dermatol 65(1):16–38PubMedGoogle Scholar
  21. 21.
    Hardman MJ, Moore L, Ferguson MW, Byrne C (1999) Barrier formation in the human fetus is patterned. J Invest Dermatol 113(6):1106–1113PubMedGoogle Scholar
  22. 22.
    Ito N et al (2005) Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J 19(10):1332–1334PubMedGoogle Scholar
  23. 23.
    Nicolaides N, Fu HC, Ansari MN, Rice GR (1972) The fatty acids of wax esters and sterol esters from vernix caseosa and from human skin surface lipid. Lipids 7(8):506–517PubMedGoogle Scholar
  24. 24.
    Kurokawa I et al (2009) New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol 18(10):821–832PubMedGoogle Scholar
  25. 25.
    Hardman MJ, Sisi P, Banbury DN, Byrne C (1998) Patterned acquisition of skin barrier function during development. Development 125(8):1541–1552PubMedGoogle Scholar
  26. 26.
    Youssef W, Wickett RR, Hoath SB (2001) Surface free energy characterization of vernix caseosa. Potential role in waterproofing the newborn infant. Skin Res Technol 7(1):10–17PubMedGoogle Scholar
  27. 27.
    Caspers PJ, Lucassen GW, Puppels GJ (2003) Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys J 85(1):572–580PubMedGoogle Scholar
  28. 28.
    Verdier-Sevrain S, Bonte F (2007) Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol 6(2):75–82PubMedGoogle Scholar
  29. 29.
    Warner RR, Myers MC, Taylor DA (1988) Electron probe analysis of human skin: determination of the water concentration profile. J Invest Dermatol 90(2):218–224PubMedGoogle Scholar
  30. 30.
    Denda M et al (1998) Exposure to a dry environment enhances epidermal permeability barrier function. J Invest Dermatol 111(5):858–863PubMedGoogle Scholar
  31. 31.
    Denda M, Sato J, Tsuchiya T, Elias PM, Feingold KR (1998) Low humidity stimulates epidermal DNA synthesis and amplifies the hyperproliferative response to barrier disruption: implication for seasonal exacerbations of inflammatory dermatoses. J Invest Dermatol 111(5):873–878PubMedGoogle Scholar
  32. 32.
    Fluhr JW, Lazzerini S, Distante F, Gloor M, Berardesca E (1999) Effects of prolonged occlusion on stratum corneum barrier function and water holding capacity. Skin Pharmacol Appl Skin Physiol 12(4):193–198PubMedGoogle Scholar
  33. 33.
    Proksch E, Feingold KR, Man MQ, Elias PM (1991) Barrier function regulates epidermal DNA synthesis. J Clin Invest 87(5):1668–1673PubMedGoogle Scholar
  34. 34.
    Tansirikongkol A, Visscher MO, Wickett RR (2007) Water-handling properties of vernix caseosa and a synthetic analogue. J Cosmet Sci 58(6):651–662PubMedGoogle Scholar
  35. 35.
    Tollin M et al (2005) Vernix caseosa as a multi-component defence system based on polypeptides, lipids and their interactions. Cell Mol Life Sci 62(19–20):2390–2399PubMedGoogle Scholar
  36. 36.
    Fu HC, Nicolaides N (1969) The structure of alkane diols of diesters in vernix caseosa lipids. Lipids 4(2):170–175PubMedGoogle Scholar
  37. 37.
    Haahti E, Nikkari T, Salmi AM, Laaksonen AL (1961) Fatty acids of vernix caseosa. Scand J Clin Lab Invest 13:70–73PubMedGoogle Scholar
  38. 38.
    Kaerkkaeinen J, Nikkari T, Ruponen S, Haahti E (1965) Lipids of vernix caseosa. J Invest Dermatol 44:333–338PubMedGoogle Scholar
  39. 39.
    Hauff S, Vetter W (2010) Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry. J Chromatogr A 1217(52):8270–8278PubMedGoogle Scholar
  40. 40.
    Ran-Ressler RR, Devapatla S, Lawrence P, Brenna JT (2008) Branched chain fatty acids are constituents of the normal healthy newborn gastrointestinal tract. Pediatr Res 64(6):605–609PubMedGoogle Scholar
  41. 41.
    Wertz PW (2006) Biochemistry of human stratum corneum lipids. In: Elias P, Feingold K (eds) Skin barrier. Taylor & Francis, New York, pp 33–42Google Scholar
  42. 42.
    Huang HY et al (2007) Basic characteristics of sporolactobacillus inulinus BCRC 14647 for potential probiotic properties. Curr Microbiol 54(5):396–404PubMedGoogle Scholar
  43. 43.
    Veerkamp JH (1971) Fatty acid composition of bifidobacterium and lactobacillus strains. J Bacteriol 108(2):861–867PubMedGoogle Scholar
  44. 44.
    Narendran V, Visscher MO, Abril I, Hendrix SW, Hoath SB (2010) Biomarkers of epidermal innate immunity in premature and full-term infants. Pediatr Res 67(4):382–386PubMedGoogle Scholar
  45. 45.
    Bouwstra JA et al (1996) Phase behavior of isolated skin lipids. J Lipid Res 37(5):999–1011PubMedGoogle Scholar
  46. 46.
    Bouwstra JA et al (1991) Structural investigations of human stratum corneum by small-angle X-ray scattering: phase behavior of isolated skin lipids. J Invest Dermatol 97(6):1005–1012PubMedGoogle Scholar
  47. 47.
    Swartzendruber DC, Wertz PW, Madison KC, Downing DT (1987) Evidence that the corneocyte has a chemically bound lipid envelope. J Invest Dermatol 88(6):709–713PubMedGoogle Scholar
  48. 48.
    Williams ML, Hincenbergs M, Holbrook KA (1988) Skin lipid content during early fetal development. J Invest Dermatol 91(3):263–268PubMedGoogle Scholar
  49. 49.
    Freinkel RK, Fiedler-Weiss V (1974) Esterification of sterols during differentiation and cornification of developing rat epidermis. J Invest Dermatol 62(4):458–462PubMedGoogle Scholar
  50. 50.
    Tachi M, Iwamori M (2008) Mass spectrometric characterization of cholesterol esters and wax esters in epidermis of fetal, adult and keloidal human skin. Exp Dermatol 17(4):318–323PubMedGoogle Scholar
  51. 51.
    Downing DT, Strauss JS, Pochi PE (1969) Variability in the chemical composition of human skin surface lipids. J Invest Dermatol 53(5):322–327PubMedGoogle Scholar
  52. 52.
    Wysocki SJ, Grauaug A, O’Neill G, Hahnel R (1981) Lipids in forehead vernix from newborn infants. Biol Neonate 39(5–6):300–304PubMedGoogle Scholar
  53. 53.
    Narendran V, Pickens W, Wickett R, Hoath S (2000) Interaction between pulmonary surfactant and vernix: a potential mechanism for induction of amniotic fluid turbidity. Pediatr Res 48(1):120–124PubMedGoogle Scholar
  54. 54.
    Tansirikongkol A, Hoath SB, Pickens WL, Visscher MO, Wickett RR (2008) Equilibrium water content in native vernix and its cellular component. J Pharm Sci 97(2):985–994PubMedGoogle Scholar
  55. 55.
    Hoath SB, Pickens WL, Visscher MO (2006) The biology of vernix caseosa. Int J Cosmet Sci 28(5):319–333PubMedGoogle Scholar
  56. 56.
    Bulienkov NA (2003) The role of system-forming modular water structures in self-organization of biological systems. J Mol Liquids 106(2–3):257–275Google Scholar
  57. 57.
    Hoath SB, Leahy DG (2003) The organization of human epidermis: functional epidermal units and phi proportionality. J Invest Dermatol 121(6):1440–1446PubMedGoogle Scholar
  58. 58.
    Akinbi HT, Narendran V, Pass AK, Markart P, Hoath SB (2004) Host defense proteins in vernix caseosa and amniotic fluid. Am J Obstet Gynecol 191(6):2090–2096PubMedGoogle Scholar
  59. 59.
    Gunt H (2002) Water handling properties of vernix caseosa. University of Cincinnati, CincinnatiGoogle Scholar
  60. 60.
    Tansirikongkol A (2006) Development of a synthetic vernix equivalent, and its water handling and barrier protective properties in comparison with vernix caseosa. PhD, University of Cincinnati, CincinnatiGoogle Scholar
  61. 61.
    Visscher M, Narendran V, Joseph W, Gunt H, Hoath S (2002) Development of topical eqidermal barriers for preterm infant skin: comparison of aquaphor and vernix caseosa. Pediatric Academic Society Annual Meeting, May 4-7, Baltimore, MD, USAGoogle Scholar
  62. 62.
    Visscher M, Hoath SB, Conroy E, Wickett RR (2001) Effect of semipermeable membranes on skin barrier repair following tape stripping. Arch Dermatol Res 293(10):491–499PubMedGoogle Scholar
  63. 63.
    Moraille R, Pickens WL, Visscher MO, Hoath SB (2005) A novel role for vernix caseosa as a skin cleanser. Biol Neonate 87(1):8–14PubMedGoogle Scholar
  64. 64.
    Hashimoto K (1970) The ultrastructure of the skin of human embryos. IX. Formation of the hair cone and intraepidermal hair canal. Arch Klin Exp Dermatol 238(4):333–345PubMedGoogle Scholar
  65. 65.
    Marchini G et al (2002) The newborn infant is protected by an innate antimicrobial barrier: peptide antibiotics are present in the skin and vernix caseosa. Br J Dermatol 147(6):1127–1134PubMedGoogle Scholar
  66. 66.
    Yoshio H et al (2003) Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense. Pediatr Res 53(2):211–216PubMedGoogle Scholar
  67. 67.
    Bouzari N, Kim N, Kirsner RS (2009) Defense of the skin with LL-37. J Invest Dermatol 129:814PubMedGoogle Scholar
  68. 68.
    Law S, Fotos PG, Wertz PW (1997) Skin surface lipids inhibit adherence of candida albicans to stratum corneum. Dermatology 195(3):220–223PubMedGoogle Scholar
  69. 69.
    Bautista MI, Wickett RR, Visscher MO, Pickens WL, Hoath SB (2000) Characterization of vernix caseosa as a natural biofilm: comparison to standard oil-based ointments. Pediatr Dermatol 17(4):253–260PubMedGoogle Scholar
  70. 70.
    Visscher M, Maganti S, Munson KA, Bare DE, Hoath SB (1999) Early adaptation of human skin following birth: a biophysical assessment. Skin Res Technol 5:213–220Google Scholar
  71. 71.
    Visscher MO, Chatterjee R, Munson KA, Pickens WL, Hoath SB (2000) Changes in diapered and nondiapered infant skin over the first month of life. Pediatr Dermatol 17(1):45–51PubMedGoogle Scholar
  72. 72.
    Nikolovski J, Stamatas GN, Kollias N, Wiegand BC (2008) Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Invest Dermatol 128(7):1728–1736PubMedGoogle Scholar
  73. 73.
    Visscher MO et al (2005) Vernix caseosa in neonatal adaptation. J Perinatol 25(7):440–446PubMedGoogle Scholar
  74. 74.
    Visscher MO et al (2011) Neonatal skin maturation-vernix caseosa and free amino acids. Pediatr Dermatol 28(2):122–132PubMedGoogle Scholar
  75. 75.
    Schmid-Wendtner MH, Korting HC (2006) The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol 19(6):296–302PubMedGoogle Scholar
  76. 76.
    Rippke F, Schreiner V, Schwanitz HJ (2002) The acidic milieu of the horny layer: new findings on the physiology and pathophysiology of skin pH. Am J Clin Dermatol 3(4):261–272PubMedGoogle Scholar
  77. 77.
    Aly R, Shirley C, Cunico B, Maibach HI (1978) Effect of prolonged occlusion on the microbial flora, pH, carbon dioxide and transepidermal water loss on human skin. J Invest Dermatol 71(6):378–381PubMedGoogle Scholar
  78. 78.
    Puhvel SM, Reisner RM, Amirian DA (1975) Quantification of bacteria in isolated pilosebaceous follicles in normal skin. J Invest Dermatol 65(6):525–531PubMedGoogle Scholar
  79. 79.
    Fluhr JW et al (2001) Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol 117(1):44–51PubMedGoogle Scholar
  80. 80.
    Hoeger PH, Enzmann CC (2002) Skin physiology of the neonate and young infant: a prospective study of functional skin parameters during early infancy. Pediatr Dermatol 19(3):256–262PubMedGoogle Scholar
  81. 81.
    Yosipovitch G, Maayan-Metzger A, Merlob P, Sirota L (2000) Skin barrier properties in different body areas in neonates. Pediatrics 106(1 Pt 1):105–108PubMedGoogle Scholar
  82. 82.
    Fluhr JW et al (2009) Topical peroxisome proliferator activated receptor activators accelerate postnatal stratum corneum acidification. J Invest Dermatol 129:365–374, Epub 2008 Aug 14PubMedGoogle Scholar
  83. 83.
    Hachem JP et al (2010) Acute acidification of stratum corneum membrane domains using polyhydroxyl acids improves lipid processing and inhibits degradation of corneodesmosomes. J Invest Dermatol 130(2):500–510PubMedGoogle Scholar
  84. 84.
    Hatano Y et al (2009) Maintenance of an acidic stratum corneum prevents emergence of murine atopic dermatitis. J Invest Dermatol 129(7):1824–1835PubMedGoogle Scholar
  85. 85.
    Darmstadt GL et al (2002) Impact of topical oils on the skin barrier: possible implications for neonatal health in developing countries. Acta Paediatr 91(5):546–554PubMedGoogle Scholar
  86. 86.
    Schurer NY (2002) Implementation of fatty acid carriers to skin irritation and the epidermal barrier. Contact Dermatitis 47(4):199–205PubMedGoogle Scholar
  87. 87.
    Darmstadt GL et al (2005) Effect of topical treatment with skin barrier-enhancing emollients on nosocomial infections in preterm infants in Bangladesh: a randomised controlled trial. Lancet 365(9464):1039–1045PubMedGoogle Scholar
  88. 88.
    Yang L, Mao-Qiang M, Taljebini M, Elias PM, Feingold KR (1995) Topical stratum corneum lipids accelerate barrier repair after tape stripping, solvent treatment and some but not all types of detergent treatment. Br J Dermatol 133(5):679–685PubMedGoogle Scholar
  89. 89.
    Kessner D, Ruettinger A, Kiselev MA, Wartewig S, Neubert RH (2008) Properties of ceramides and their impact on the stratum corneum structure. Part 2: Stratum corneum lipid model systems. Skin Pharmacol Physiol 21(2):58–74PubMedGoogle Scholar
  90. 90.
    Elias PM, Mao-Qiang M, Thornfeldt CR, Feingold KR (1999) The epidermal permeability barrier: effects of physiologic and non-physiologic lipids. In: Hoppe U (ed) The lanolin book. Beiersdorf AG, Hamburg, pp 253–279Google Scholar
  91. 91.
    Tansirikongkol A, Wickett RR, Visscher MO, Hoath SB (2007) Effect of vernix caseosa on the penetration of chymotryptic enzyme: potential role in epidermal barrier development. Pediatr Res 62(1):49–53PubMedGoogle Scholar
  92. 92.
    Narendran V, Pickens WL, Visscher MO, Alla SK, Hoath SB (2010) Binding of unconjugated bilirubin to human epidermis and vernix caseosa: the physiological basis of jaundice. Society for Pediatric Research, May 1-4, Vancouver, CanadaGoogle Scholar
  93. 93.
    Hoath S, Narendran V (2000) Adhesives and emollients in newborn care. Semin Neonatol 5(289–296)Google Scholar
  94. 94.
    Rutter N (1996) The immature skin. Eur J Pediatr 155(Suppl 2):S18–S20PubMedGoogle Scholar
  95. 95.
    Darmstadt GL, Dinulos JG (2000) Neonatal skin care. Pediatr Clin North Am 47(4):757–782PubMedGoogle Scholar
  96. 96.
    Agren J, Sjors G, Sedin G (1998) Transepidermal water loss in infants born at 24 and 25 weeks of gestation. Acta Paediatr 87(11):1185–1190PubMedGoogle Scholar
  97. 97.
    Harpin VA, Rutter N (1983) Barrier properties of the newborn infant’s skin. J Pediatr 102(3):419–425PubMedGoogle Scholar
  98. 98.
    Kalia YN, Nonato LB, Lund CH, Guy RH (1998) Development of skin barrier function in premature infants. J Invest Dermatol 111(2):320–326PubMedGoogle Scholar
  99. 99.
    Nonato LB, Lund CH, Kalia YN, Guy RH (2000) Transepidermal water loss in 24 and 25 weeks gestational age infants. Acta Paediatr 89(6):747–748PubMedGoogle Scholar
  100. 100.
    Edwards WH, Conner JM, Soll RF (2004) The effect of prophylactic ointment therapy on nosocomial sepsis rates and skin integrity in infants with birth weights of 501 to 1000 g. Pediatrics 113(5):1195–1203PubMedGoogle Scholar
  101. 101.
    Nopper AJ et al (1996) Topical ointment therapy benefits premature infants. J Pediatr 128(5 Pt 1):660–669PubMedGoogle Scholar
  102. 102.
    Pabst RC, Starr KP, Qaiyumi S, Schwalbe RS, Gewolb IH (1999) The effect of application of aquaphor on skin condition, fluid requirements, and bacterial colonization in very low birth weight infants. J Perinatol 19(4):278–283PubMedGoogle Scholar
  103. 103.
    Zhukov BN, Neverova EI, Nikitin KE, Kostiaev VE, Myshentsev PN (1992) A comparative evaluation of the use of vernix caseosa and solcoseryl in treating patients with trophic ulcers of the lower extremities. Vestn Khir Im I I Grek 148(6):339–341PubMedGoogle Scholar
  104. 104.
    Oudshoorn MH et al (2009) Development of a murine model to evaluate the effect of vernix caseosa on skin barrier recovery. Exp Dermatol 18(2):178–184PubMedGoogle Scholar
  105. 105.
    Visscher MO, Barai N, LaRuffa AA, Pickens WL, Narendran V, Hoath SB (2011) Epidermal barrier treatments based on vernix caseosa. Skin Pharmacol Physiol 24:322–329PubMedGoogle Scholar
  106. 106.
    Sedin G, Hammarlund K, Stromberg B (1983) Transepidermal water loss in full-term and pre-term infants. Acta Paediatr Scand Suppl 305:27–31PubMedGoogle Scholar
  107. 107.
    Visscher M, Robinson M, Wickett R (2011) Stratum corneum free amino acids following barrier perturbation and repair. Int J Cosmet Sci 33(1):80–89PubMedGoogle Scholar
  108. 108.
    Barai N (2005) Effect of vernix caseosa on epidermal barrier maturation and repair: implications in wound healing. PhD, University of Cincinnati, CincinnatiGoogle Scholar
  109. 109.
    Oudshoorn MH et al (2009) Development of a murine model to evaluate the effect of vernix caseosa on skin barrier recovery. Exp Dermatol 18(2):178–184Google Scholar
  110. 110.
    Rissmann R et al (2008) Lanolin-derived lipid mixtures mimic closely the lipid composition and organization of vernix caseosa lipids. Biochim Biophys Acta 1778(10):2350–2360PubMedGoogle Scholar
  111. 111.
    Rissmann R et al (2009) Mimicking vernix caseosa – preparation and characterization of synthetic biofilms. Int J Pharm 372(1–2):59–65PubMedGoogle Scholar
  112. 112.
    Oudshoorn MH et al (2009) Effect of synthetic vernix biofilms on barrier recovery of damaged mouse skin. Exp Dermatol 18:695–703PubMedGoogle Scholar
  113. 113.
    Wakai R, Lengle J, Leuthold A (2000) Transmission of electric and magnetic foetal cardiac signals in a case of ectopia cordis: the dominant role of the vernix caseosa. Phys Med Biol 45(7):1989–1995PubMedGoogle Scholar
  114. 114.
    Anonymous (2009) Newborn care until the first week of life. World Health Organization, Geneva, SwitzerlandGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Skin Sciences ProgramCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Division of Plastic Surgery, College of MedicineUniversity of CincinnatiCincinnatiUSA
  3. 3.Perinatal Institute, Cincinnati Children’s Hospital, Medical CenterCincinnatiUSA
  4. 4.Department of Pediatrics, College of MedicineUniversity of CincinnatiCincinnatiUSA

Personalised recommendations