Desquamation: It Is Almost All About Proteases

  • Rainer Voegeli
  • Anthony V. Rawlings


This chapter reviews the structure, function, and formation of the stratum corneum, how it is perturbed in a variety of conditions. In particular it discusses the role of proteases such as the kallikreins, plasmin, and urokinase and their inhibitors that play a role in desquamation of healthy and pathological skin. Faulty desquamation is the accumulation of corneocytes on the surface of the stratum corneum that leads ultimately to the cosmetic condition commonly termed as “dry skin.” This can be flaky skin as is normally seen on the body or rough skin observed on the face. Changes in the proteolytic balance of the skin can also result in inflammation, which leads to the typical clinical signs of redness, scaling, and itching. Reduced protease activity is known in soap-induced dry skin, but increased serine protease activity occurs in most, if not all, inflammatory dermatoses, ranging from genetic disorders, such as Netherton syndrome, psoriasis, and atopic dermatitis, to subclinical barrier abnormalities induced, e.g., surfactants, or by environmental influences. Serine proteases might represent key markers for underlying and sometimes nonobservable skin abnormalities. The biology of skin moisturization, of which hydration is only one benefit, is highly complex. The future of all new moisturizers lies in the fully understanding of the control and impairment of desquamation. Better understanding of the multistep proteolytic events and of the regulatory mechanisms involved in desquamation should enable the design of new treatments for the skin disorders associated with disturbance in the stratum corneum turnover. This will be the ultimate approach to corneocare.


Serine Protease Stratum Corneum Atopic Dermatitis Patient Secretory Leukocyte Protease Inhibitor Serine Protease Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kligman AM (2011) Corneobiology and corneotherapy – a final chapter. Int J Cosmet Sci 33(3):197–209PubMedCrossRefGoogle Scholar
  2. 2.
    Elias PM (2005) Stratum corneum defensive functions: an integrated view. J Invest Dermatol 125(2):183–200PubMedGoogle Scholar
  3. 3.
    Chaturvedi V et al (2006) Defining the caspase-containing apoptotic machinery contributing to cornification in human epidermal equivalents. Exp Dermatol 15(1):14–22PubMedCrossRefGoogle Scholar
  4. 4.
    Egelrud T (1993) Purification and preliminary characterization of stratum corneum chymotryptic enzyme: a proteinase that may be involved in desquamation. J Invest Dermatol 101(2):200–204PubMedCrossRefGoogle Scholar
  5. 5.
    Haftek M, Simon M, Serre G (2006) Corneodesmosomes: Pivotal Actors in the Stratum Corneum Cohesion and Desquamation. In: Elias PM, Feingold KR (eds) Skin barrier. Taylor & Francis, New York, pp 171–189Google Scholar
  6. 6.
    Marks R (2004) The stratum corneum barrier: the final frontier. J Nutr 134(8 Suppl):2017S–2021SPubMedGoogle Scholar
  7. 7.
    Jonca N et al (2002) Corneodesmosin, a component of epidermal corneocyte desmosomes, displays homophilic adhesive properties. J Biol Chem 277(7):5024–5029PubMedCrossRefGoogle Scholar
  8. 8.
    Michaels AS, Chandrasekaran SK, Shaw JE (1975) Drug permeation through human skin: Theory and invitro experimental measurement. AIChE J 21(5):985–996CrossRefGoogle Scholar
  9. 9.
    Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80(Suppl):44s–49sCrossRefGoogle Scholar
  10. 10.
    Wepf R et al (2007) Multimodal imaging of skin structures: imagining imaging of the skin. In: Wilhelm K-P et al (eds) Bioengineering of the skin: skin imaging and analysis. Informa Healthcare, New YorkGoogle Scholar
  11. 11.
    Cork MJ et al (2009) Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 129(8):1892–1908PubMedCrossRefGoogle Scholar
  12. 12.
    Serre G et al (1991) Identification of late differentiation antigens of human cornified epithelia, expressed in re-organized desmosomes and bound to cross-linked envelope. J Invest Dermatol 97(6):1061–1072PubMedCrossRefGoogle Scholar
  13. 13.
    Lundström A et al (1994) Evidence for a role of corneodesmosin, a protein which may serve to modify desmosomes during cornification, in stratum corneum cell cohesion and desquamation. Arch Dermatol Res 286(7):369–375PubMedCrossRefGoogle Scholar
  14. 14.
    Brandner JM, Haftek M, Niessen CM (2010) Adherens junctions, desmosomes and tight junctions in epidermal barrier function. Open Dermatol J 4:14–20CrossRefGoogle Scholar
  15. 15.
    Egelrud T (1999) Desquamation. In: Loden M, Maibach H (eds) Dry skin and moisturizers. CRC Press, Boca Raton, pp 109–117Google Scholar
  16. 16.
    Chapman SJ, Walsh A (1990) Desmosomes, corneosomes and desquamation. An ultrastructural study of adult pig epidermis. Arch Dermatol Res 282(5):304–310PubMedCrossRefGoogle Scholar
  17. 17.
    Fartasch M, Bassukas ID, Diepgen TL (1993) Structural relationship between epidermal lipid lamellae, lamellar bodies and desmosomes in human epidermis: an ultrastructural study. Br J Dermatol 128(1):1–9PubMedCrossRefGoogle Scholar
  18. 18.
    Neubert RHH, Wepf R (2008) Das stratum corneum – struktur und morphologie einer hoch effizienten barriere. Medicos 4:21–28Google Scholar
  19. 19.
    Stokes DL (2007) Desmosomes from a structural perspective. Curr Opin Cell Biol 19(5):565–571PubMedCrossRefGoogle Scholar
  20. 20.
    Green KJ, Simpson CL (2007) Desmosomes: new perspectives on a classic. J Invest Dermatol 127(11):2499–2515PubMedCrossRefGoogle Scholar
  21. 21.
    Green KJ, Gaudry CA (2000) Are desmosomes more than tethers for intermediate filaments? Nat Rev Mol Cell Biol 1(3):208–216PubMedCrossRefGoogle Scholar
  22. 22.
    Kottke MD, Delva E, Kowalczyk AP (2006) The desmosome: cell science lessons from human diseases. J Cell Sci 119(5):797–806PubMedCrossRefGoogle Scholar
  23. 23.
    Garrod D, Chidgey M, North A (1996) Desmosomes: differentiation, development, dynamics and disease. Curr Opin Cell Biol 8(5):670–678PubMedCrossRefGoogle Scholar
  24. 24.
    Watkinson A et al (2001) Water modulation of stratum corneum chymotryptic enzyme activity and desquamation. Arch Dermatol Res 293(9):470–476PubMedCrossRefGoogle Scholar
  25. 25.
    Naoe Y et al (2010) Bidimensional analysis of desmoglein 1 distribution on the outermost corneocytes provides the structural and functional information of the stratum corneum. J Dermatol Sci 57(3):192–198PubMedCrossRefGoogle Scholar
  26. 26.
    Horikoshi T et al (1999) Role of endogenous cathepsin D-like and chymotrypsin-like proteolysis in human epidermal desquamation. Br J Dermatol 141(3):453–459PubMedCrossRefGoogle Scholar
  27. 27.
    Ekholm IE, Brattsand M, Egelrud T (2000) Stratum corneum tryptic enzyme in normal epidermis: a missing link in the desquamation process? J Invest Dermatol 114(1):56–63PubMedCrossRefGoogle Scholar
  28. 28.
    Watkinson A (1999) Stratum corneum thiol protease (SCTP): a novel cysteine protease of late epidermal differentiation. Arch Dermatol Res 291(5):260–268PubMedCrossRefGoogle Scholar
  29. 29.
    Skerrow CJ, Clelland DG, Skerrow D (1989) Changes to desmosomal antigens and lectin-binding sites during differentiation in normal human epidermis: a quantitative ultrastructural study. J Cell Sci 92(4):667–677PubMedGoogle Scholar
  30. 30.
    Chapman SJ et al (1991) Lipids, proteins and corneocyte adhesion. Arch Dermatol Res 283(3):167–173PubMedCrossRefGoogle Scholar
  31. 31.
    Harding CR et al (2000) Dry skin, moisturization and corneodesmolysis. Int J Cosmet Sci 22(1):21–52PubMedCrossRefGoogle Scholar
  32. 32.
    Caubet C et al (2004) Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE//KLK5//hK5 and SCCE//KLK7//hK7. J Invest Dermatol 122(5):1235–1244PubMedCrossRefGoogle Scholar
  33. 33.
    Öhman H, Vahlquist A (1998) The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis: a clue to the molecular origin of the “acid skin mantle”? J Invest Dermatol 111(4):674–677PubMedCrossRefGoogle Scholar
  34. 34.
    Komatsu N et al (2007) Aberrant human tissue kallikrein levels in the stratum corneum and serum of patients with psoriasis: dependence on phenotype, severity and therapy. Br J Dermatol 156(5):875–883PubMedCrossRefGoogle Scholar
  35. 35.
    Simon M et al (2002) Abnormal proteolysis of corneodesmosin in psoriatic skin. Br J Dermatol 147(5):1053Google Scholar
  36. 36.
    Komatsu N et al (2005) Multiple tissue kallikrein mRNA and protein expression in normal skin and skin diseases. Br J Dermatol 153(2):274–281PubMedCrossRefGoogle Scholar
  37. 37.
    Komatsu N et al (2007) Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp Dermatol 16(6):513–519PubMedCrossRefGoogle Scholar
  38. 38.
    Voegeli R et al (2009) Increased stratum corneum serine protease activity in acute eczematous atopic skin. Br J Dermatol 161:70–77PubMedCrossRefGoogle Scholar
  39. 39.
    Cork MJ et al (2006) New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J Allergy Clin Immunol 118(1):3–21, quiz 22–3PubMedCrossRefGoogle Scholar
  40. 40.
    Haftek M et al (1997) Expression of corneodesmosin in the granular layer and stratum corneum of normal and diseased epidermis. Br J Dermatol 137(6):864–873PubMedCrossRefGoogle Scholar
  41. 41.
    Simon M et al (2008) Alterations in the desquamation-related proteolytic cleavage of corneodesmosin and other corneodesmosomal proteins in psoriatic lesional epidermis. Br J Dermatol 159(1):77–85PubMedCrossRefGoogle Scholar
  42. 42.
    Rawlings AV et al (1994) Abnormalities in stratum corneum structure, lipid composition, and desmosome degradation in soap-induced winter xerosis. J Soc Cosmet Chem 45:203–220Google Scholar
  43. 43.
    Rawlings AV et al (1995) The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch Dermatol Res 287(5):457–464PubMedCrossRefGoogle Scholar
  44. 44.
    Simon M et al (2001) Persistence of both peripheral and non-peripheral corneodesmosomes in the upper stratum corneum of winter xerosis skin versus only peripheral in normal skin. J Invest Dermatol 116(1):23–30PubMedCrossRefGoogle Scholar
  45. 45.
    Brandner JM (2009) Tight junctions and tight junction proteins in mammalian epidermis. Eur J Pharm Biopharm 72(2):289–294PubMedCrossRefGoogle Scholar
  46. 46.
    Schlüter H et al (2004) Sealing the live part of the skin: the integrated meshwork of desmosomes, tight junctions and curvilinear ridge structures in the cells of the uppermost granular layer of the human epidermis. Eur J Cell Biol 83(11–12):655–665PubMedCrossRefGoogle Scholar
  47. 47.
    Haftek M et al (2011) Compartmentalization of the human stratum corneum by persistent tight junction-like structures. Exp Dermatol 20(8):617–621PubMedCrossRefGoogle Scholar
  48. 48.
    Igawa S et al (2011) Tight junctions in the stratum corneum explain spatial differences in corneodesmosome degradation. Exp Dermatol 20(1):53–57PubMedCrossRefGoogle Scholar
  49. 49.
    Hachem JP et al (2005) Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol 125(3):510–520PubMedCrossRefGoogle Scholar
  50. 50.
    Parra JL, Paye M (2003) EEMCO guidance for the in vivo assessment of skin surface pH. Skin Pharmacol Appl Skin Physiol 16(3):188–202PubMedGoogle Scholar
  51. 51.
    Öhman H, Vahlquist A (1994) In vivo studies concerning a pH gradient in human stratum corneum and upper epidermis. Acta Derm Venereol 74(5):375–379PubMedGoogle Scholar
  52. 52.
    Behne MJ et al (2002) NHE1 regulates the stratum corneum permeability barrier homeostasis. Microenvironment acidification assessed with fluorescence lifetime imaging. J Biol Chem 277(49):47399–47406PubMedCrossRefGoogle Scholar
  53. 53.
    Behne MJ et al (2003) Neonatal development of the stratum corneum pH gradient: localization and mechanisms leading to emergence of optimal barrier function. J Invest Dermatol 120(6):998–1006PubMedCrossRefGoogle Scholar
  54. 54.
    Suzuki Y et al (1993) Detection and characterization of endogenous protease associated with desquamation of stratum corneum. Arch Dermatol Res 285(6):372–377PubMedCrossRefGoogle Scholar
  55. 55.
    Ovaere P et al (2009) The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci 34(9):453–463PubMedCrossRefGoogle Scholar
  56. 56.
    Morizane S et al (2010) Kallikrein expression and cathelicidin processing are independently controlled in keratinocytes by calcium, vitamin D(3), and retinoic acid. J Invest Dermatol 130(5):1297–1306PubMedCrossRefGoogle Scholar
  57. 57.
    Menon GK et al (1992) Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell Tissue Res 270(3):503–512PubMedCrossRefGoogle Scholar
  58. 58.
    Hachem J-P et al (2006) Serine protease signaling of epidermal permeability barrier homeostasis. J Invest Dermatol 126(9):2074–2086PubMedCrossRefGoogle Scholar
  59. 59.
    Demerjian M et al (2008) Acute modulations in permeability barrier function regulate epidermal cornification. Role of caspase-14 and the protease-activated receptor type 2. Am J Pathol 172(1):86–97PubMedCrossRefGoogle Scholar
  60. 60.
    Sexsmith E, Petersen WF (1918) Skin ferments. J Exp Med 27(2):273–282PubMedGoogle Scholar
  61. 61.
    Di Cera E (2009) Serine proteases. IUBMB Life 61(5):510–515PubMedCrossRefGoogle Scholar
  62. 62.
    Emami N, Diamandis EP (2007) Human tissue kallikreins: a road under construction. Clin Chim Acta 381(1):78–84PubMedCrossRefGoogle Scholar
  63. 63.
    Bissett DL, McBride JF, Patrick LF (1987) Role of protein and calcium in stratum corneum cell cohesion. Arch Dermatol Res 279(3):184–189PubMedCrossRefGoogle Scholar
  64. 64.
    Egelrud T, Hofer PA, Lundstrom A (1988) Proteolytic degradation of desmosomes in plantar stratum corneum leads to cell dissociation in vitro. Acta Derm Venereol 68(2):93–97PubMedGoogle Scholar
  65. 65.
    Lundström A, Egelrud T (1988) Cell shedding from human plantar skin in vitro: evidence of its dependence on endogenous proteolysis. J Invest Dermatol 91(4):340–343PubMedCrossRefGoogle Scholar
  66. 66.
    Egelrud T, Lundstrom A (1990) The dependence of detergent-induced cell dissociation in non-palmo-plantar stratum corneum on endogenous proteolysis. J Invest Dermatol 95(4):456–459PubMedCrossRefGoogle Scholar
  67. 67.
    Lundström A, Egelrud T (1990) Evidence that cell shedding from plantar stratum corneum in vitro involves endogenous proteolysis of the desmosomal protein desmoglein I. J Invest Dermatol 94(2):216–220PubMedCrossRefGoogle Scholar
  68. 68.
    Lundström A, Egelrud T (1990) Cell shedding from human plantar skin in vitro: evidence that two different types of protein structures are degraded by a chymotrypsin-like enzyme. Arch Dermatol Res 282(4):234–237PubMedCrossRefGoogle Scholar
  69. 69.
    Egelrud T, Lundström A (1991) A chymotrypsin-like proteinase that may be involved in desquamation in plantar stratum corneum. Arch Dermatol Res 283(2):108–112PubMedCrossRefGoogle Scholar
  70. 70.
    Lundström A, Egelrud T (1991) Stratum corneum chymotryptic enzyme: a proteinase which may be generally present in the stratum corneum and with a possible involvement in desquamation. Acta Derm Venereol 71(6):471–474PubMedGoogle Scholar
  71. 71.
    Paliouras M, Diamandis EP (2006) The kallikrein world: an update on the human tissue kallikreins. Biol Chem 387(6):643–652PubMedCrossRefGoogle Scholar
  72. 72.
    Clements JA et al (2004) The tissue kallikrein family of serine proteases: functional roles in human disease and potential as clinical biomarkers. Crit Rev Clin Lab Sci 41(3):265–312PubMedCrossRefGoogle Scholar
  73. 73.
    Brattsand M et al (2005) A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol 124(1):198–203PubMedCrossRefGoogle Scholar
  74. 74.
    Stefansson K et al (2006) Kallikrein-related peptidase 14 may be a major contributor to trypsin-like proteolytic activity in human stratum corneum. Biol Chem 387(6):761–768PubMedCrossRefGoogle Scholar
  75. 75.
    Komatsu N et al (2005) Quantification of human tissue kallikreins in the stratum corneum: dependence on age and gender. J Invest Dermatol 125(6):1182–1189PubMedCrossRefGoogle Scholar
  76. 76.
    Komatsu N et al (2006) Quantification of eight tissue kallikreins in the stratum corneum and sweat. J Invest Dermatol 126(4):927–931CrossRefGoogle Scholar
  77. 77.
    Kishibe M et al (2007) Kallikrein 8 is involved in skin desquamation in cooperation with other kallikreins. J Biol Chem 282(8):5834–5841PubMedCrossRefGoogle Scholar
  78. 78.
    Yoon H et al (2008) Activation profiles of human kallikrein-related peptidases by proteases of the thrombostasis axis. Protein Sci 17:1998–2007PubMedCrossRefGoogle Scholar
  79. 79.
    Debela M et al (2008) Structures and specificity of the human kallikrein-related peptidases KLK 4, 5, 6, and 7. Biol Chem 389(6):623PubMedCrossRefGoogle Scholar
  80. 80.
    Alfano D et al (2005) The urokinase plasminogen activator and its receptor: role in cell growth and apoptosis. Thromb Haemost 93(2):205–211PubMedGoogle Scholar
  81. 81.
    Rockway TW, Nienaber V, Giranda VL (2002) Inhibitors of the protease domain of urokinase-type plasminogen activator. Curr Pharm Des 8(28):2541–2558PubMedCrossRefGoogle Scholar
  82. 82.
    Mondino A, Resnati M, Blasi F (1999) Structure and function of the urokinase receptor. Thromb Haemost 82(Suppl 1):19–22PubMedGoogle Scholar
  83. 83.
    Ogura Y et al (2008) Plasmin induces degradation and dysfunction of laminin 332 (laminin 5) and impaired assembly of basement membrane at the dermal-epidermal junction. Br J Dermatol 159(1):49–60PubMedCrossRefGoogle Scholar
  84. 84.
    Rosenberg S (2001) New developments in the urokinase-type plasminogen activator system. Expert Opin Ther Targets 5(6):711–722PubMedCrossRefGoogle Scholar
  85. 85.
    Schaefer BM et al (1995) Differential expression of urokinase-type plasminogen activator (uPA), its receptor (uPA-R), and inhibitor type-2 (PAI-2) during differentiation of keratinocytes in an organotypic coculture system. Exp Cell Res 220(2):415–423PubMedCrossRefGoogle Scholar
  86. 86.
    Jensen PJ, Lavker RM (1999) Urokinase is a positive regulator of epidermal proliferation in vivo. J Invest Dermatol 112(2):240–244PubMedCrossRefGoogle Scholar
  87. 87.
    Spiers EM, Lazarus GS, Lyons-Giordano B (1994) Expression of plasminogen activator enzymes in psoriatic epidermis. J Invest Dermatol 102(3):333–338PubMedCrossRefGoogle Scholar
  88. 88.
    Katsuta Y et al (2003) Urokinase-type plasminogen activator is activated in stratum corneum after barrier disruption. J Dermatol Sci 32(1):55–57PubMedCrossRefGoogle Scholar
  89. 89.
    Denda M et al (1997) trans-4-(aminomethyl)cyclohexane carboxylic acid (T-AMCHA), an anti-fibrinolytic agent, accelerates barrier recovery and prevents the epidermal hyperplasia induced by epidermal injury in hairless mice and humans. J Invest Dermatol 109(1):84–90PubMedCrossRefGoogle Scholar
  90. 90.
    Marschall C et al (1999) UVB increases urokinase-type plasminogen activator receptor (uPAR) expression. J Invest Dermatol 113(1):69–76PubMedCrossRefGoogle Scholar
  91. 91.
    Miralles F et al (1998) UV irradiation induces the murine urokinase-type plasminogen activator gene via the c-Jun N-terminal kinase signaling pathway: requirement of an AP1 enhancer element. Mol Cell Biol 18(8):4537–4547PubMedGoogle Scholar
  92. 92.
    Oxholm A et al (1988) Immunohistological detection of interleukin I-like molecules and tumour necrosis factor in human epidermis before and after UVB-irradiation in vivo. Br J Dermatol 118(3):369–376PubMedCrossRefGoogle Scholar
  93. 93.
    Sales KU et al (2010) Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet 42(8):676–683PubMedCrossRefGoogle Scholar
  94. 94.
    List K et al (2002) Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21(23):3765–3779PubMedCrossRefGoogle Scholar
  95. 95.
    List K et al (2003) Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1. J Cell Biol 163(4):901–910PubMedCrossRefGoogle Scholar
  96. 96.
    List K et al (2006) Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis. Am J Pathol 168(5):1513–1525PubMedCrossRefGoogle Scholar
  97. 97.
    Deraison C et al (2007) LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 18(9):3607–3619PubMedCrossRefGoogle Scholar
  98. 98.
    Zeeuwen PL et al (2007) Colocalization of cystatin M/E and cathepsin V in lamellar granules and corneodesmosomes suggests a functional role in epidermal differentiation. J Invest Dermatol 127(1):120–128PubMedCrossRefGoogle Scholar
  99. 99.
    Igarashi S et al (2004) Cathepsin D, but not cathepsin E, degrades desmosomes during epidermal desquamation. Br J Dermatol 151(2):355–361PubMedCrossRefGoogle Scholar
  100. 100.
    Meyer-Hoffert U (2009) Reddish, scaly, and itchy: how proteases and their inhibitors contribute to inflammatory skin diseases. Arch Immunol Ther Exp (Warsz) 57(5):345–354CrossRefGoogle Scholar
  101. 101.
    Bernard D et al (2001) Purification and characterization of the endoglycosidase heparanase 1 from human plantar stratum corneum: a key enzyme in epidermal physiology? J Invest Dermatol 117(5):1266–1273PubMedCrossRefGoogle Scholar
  102. 102.
    Goettig P, Magdolen V, Brandstetter H (2010) Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 92(11):1546–1567PubMedCrossRefGoogle Scholar
  103. 103.
    Borgono CA et al (2007) Expression and functional characterization of the cancer-related serine protease, human tissue kallikrein 14. J Biol Chem 282(4):2405–2422PubMedCrossRefGoogle Scholar
  104. 104.
    Debela M et al (2007) Structural basis of the zinc inhibition of human tissue kallikrein 5. J Mol Biol 373(4):1017–1031PubMedCrossRefGoogle Scholar
  105. 105.
    Debela M et al (2007) Chymotryptic specificity determinants in the 1.0 A structure of the zinc-inhibited human tissue kallikrein 7. Proc Natl Acad Sci USA 104(41):16086–16091PubMedCrossRefGoogle Scholar
  106. 106.
    Sato J et al (1998) Cholesterol sulfate inhibits proteases that are involved in desquamation of stratum corneum. J Invest Dermatol 111(2):189–193PubMedCrossRefGoogle Scholar
  107. 107.
    Ishida-Yamamoto A et al (2005) LEKTI is localized in lamellar granules, separated from KLK5 and KLK7, and is secreted in the extracellular spaces of the superficial stratum granulosum. J Invest Dermatol 124(2):360–366PubMedCrossRefGoogle Scholar
  108. 108.
    Roelandt T et al (2009) LEKTI-1 in sickness and in health. Int J Cosmet Sci 31(4):247–254PubMedCrossRefGoogle Scholar
  109. 109.
    Borgono CA et al (2007) A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem 282(6):3640–3652PubMedCrossRefGoogle Scholar
  110. 110.
    Egelrud T et al (2005) hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6. Br J Dermatol 153(6):1200–1203PubMedCrossRefGoogle Scholar
  111. 111.
    Schechter NM et al (2005) Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol Chem 386(11):1173–1184PubMedCrossRefGoogle Scholar
  112. 112.
    Meyer-Hoffert U, Wu Z, Schroder JM (2009) Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor. PLoS One 4(2):e4372PubMedCrossRefGoogle Scholar
  113. 113.
    Brattsand M et al (2009) SPINK9: a selective, skin-specific Kazal-type serine protease inhibitor. J Invest Dermatol 129(7):1656–1665PubMedCrossRefGoogle Scholar
  114. 114.
    Meyer-Hoffert U et al (2010) Isolation of SPINK6 in human skin: selective inhibitor of kallikrein-related peptidases. J Biol Chem 285(42):32174–32181PubMedCrossRefGoogle Scholar
  115. 115.
    Franzke C-W et al (1996) Antileukoprotease inhibits stratum corneum chymotryptic enzyme. Evidence for a regulative function in desquamation. J Biol Chem 271(36):21886–21890PubMedCrossRefGoogle Scholar
  116. 116.
    Tian X et al (2004) Expression of human kallikrein 7 (hK7/SCCE) and its inhibitor antileukoprotease (ALP/SLPI) in uterine endocervical glands and in cervical adenocarcinomas. Oncol Rep 12:1001–1006PubMedGoogle Scholar
  117. 117.
    Molhuizen HO et al (1993) SKALP/elafin: an elastase inhibitor from cultured human keratinocytes. Purification, cDNA sequence, and evidence for transglutaminase cross-linking. J Biol Chem 268(16):12028–12032PubMedGoogle Scholar
  118. 118.
    Taggart CC et al (2001) Cathepsin B, L, and S cleave and inactivate secretory leucoprotease inhibitor. J Biol Chem 276(36):33345–33352PubMedCrossRefGoogle Scholar
  119. 119.
    Galliano MF et al (2006) A novel protease inhibitor of the alpha2-macroglobulin family expressed in the human epidermis. J Biol Chem 281(9):5780–5789PubMedCrossRefGoogle Scholar
  120. 120.
    Oji V et al (2006) Plasminogen activator inhibitor-2 is expressed in different types of congenital ichthyosis: in vivo evidence for its cross-linking into the cornified cell envelope by transglutaminase-1. Br J Dermatol 154(5):860–867PubMedCrossRefGoogle Scholar
  121. 121.
    Hibino T et al (1999) Suppression of keratinocyte proliferation by plasminogen activator inhibitor-2. J Invest Dermatol 112(1):85–90PubMedCrossRefGoogle Scholar
  122. 122.
    Lian X, Yang T (2004) Plasminogen activator inhibitor 2: expression and role in differentiation of epidermal keratinocyte. Biol Cell 96(2):109–116PubMedCrossRefGoogle Scholar
  123. 123.
    Chavanas S et al (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25(2):141–142PubMedCrossRefGoogle Scholar
  124. 124.
    Hachem J-P et al (2006) Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Invest Dermatol 126(7):1609–1621PubMedCrossRefGoogle Scholar
  125. 125.
    Komatsu N et al (2002) Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J Invest Dermatol 118(3):436–443PubMedCrossRefGoogle Scholar
  126. 126.
    Sevilla LM et al (2007) Mice deficient in involucrin, envoplakin, and periplakin have a defective epidermal barrier. J Cell Biol 179(7):1599–1612PubMedCrossRefGoogle Scholar
  127. 127.
    Eissa A, Diamandis EP (2008) Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions. Biol Chem 389(6):669–680PubMedCrossRefGoogle Scholar
  128. 128.
    Yoon H et al (2007) Activation profiles and regulatory cascades of the human kallikrein-related peptidases. J Biol Chem 282(44):31852–31864PubMedCrossRefGoogle Scholar
  129. 129.
    Simon M et al (2001) Refined characterization of corneodesmosin proteolysis during terminal differentiation of human epidermis and its relationship to desquamation. J Biol Chem 276(23):20292–20299PubMedCrossRefGoogle Scholar
  130. 130.
    Bernard D et al (2003) Analysis of proteins with caseinolytic activity in a human stratum corneum extract revealed a yet unidentified cysteine protease and identified the so-called “stratum corneum thiol protease” as cathepsin L2. J Invest Dermatol 120(4):592–600PubMedCrossRefGoogle Scholar
  131. 131.
    Stefansson K et al (2008) Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases. J Invest Dermatol 128(1):18–25PubMedCrossRefGoogle Scholar
  132. 132.
    Oikonomopoulou K et al (2006) Proteinase-activated receptors. Targets for kallikrein signaling. J Biol Chem 281(43):32095–32112PubMedCrossRefGoogle Scholar
  133. 133.
    Egberts F et al (2004) Cathepsin D is involved in the regulation of transglutaminase 1 and epidermal differentiation. J Cell Sci 117(11):2295–2307PubMedCrossRefGoogle Scholar
  134. 134.
    Chang-Yi C, Takahashi M, Tezuka T (1997) 30-kDa trypsin-like proteases in the plantar stratum corneum. J Dermatol 24(8):504–509Google Scholar
  135. 135.
    Schepky AG et al (2004) Influence of cleansing on stratum corneum tryptic enzyme in human skin. Int J Cosmet Sci 26(5):245–253PubMedCrossRefGoogle Scholar
  136. 136.
    Hansson L et al (2002) Epidermal overexpression of stratum corneum chymotryptic enzyme in mice: a model for chronic itchy dermatitis. J Invest Dermatol 118(3):444–449PubMedCrossRefGoogle Scholar
  137. 137.
    Koyama J et al (1996) The mechanism of desquamation in the stratum corneum and its relevance to skin care. In: Proceedings of the 19th IFSCC congress, Sydney, 1996Google Scholar
  138. 138.
    Voegeli R et al (2007) Profiling of serine protease activities in human stratum corneum and detection of a stratum corneum tryptase-like enzyme. Int J Cosmet Sci 29(3):191–200PubMedCrossRefGoogle Scholar
  139. 139.
    Sato J et al (1998) Dry condition affects desquamation of stratum corneum in vivo. J Dermatol Sci 18(3):163–169PubMedCrossRefGoogle Scholar
  140. 140.
    Sato J (2002) Desquamation and the Role of Stratum Corneum Enzymes. In: Leyden JJ, Rawlings AV (eds) Skin moisturization. Marcel Dekker, New York, pp 81–94Google Scholar
  141. 141.
    Declercq L et al (2002) Adaptation response in human skin barrier to a hot and dry environment. J Invest Dermatol 119(3):716Google Scholar
  142. 142.
    Voegeli R et al (2007) Efficient and simple quantification of stratum corneum proteins on tape strippings by infrared densitometry. Skin Res Technol 13(3):242–251PubMedCrossRefGoogle Scholar
  143. 143.
    Voegeli R et al (2008) Increased basal transepidermal water loss leads to elevation of some but not all stratum corneum serine proteases. Int J Cosmet Sci 30(6):435–442PubMedCrossRefGoogle Scholar
  144. 144.
    Mohammed D et al (2011) Depth profiling of stratum corneum biophysical and molecular properties. Br J Dermatol 164(5):957–965PubMedCrossRefGoogle Scholar
  145. 145.
    Hirao T (2003) Involvement of transglutaminase in ex vivo maturation of cornified envelopes in the stratum corneum. Int J Cosmet Sci 25(5):245–257PubMedCrossRefGoogle Scholar
  146. 146.
    Harding CR et al (2003) The cornified cell envelope: an important marker of stratum corneum maturation in healthy and dry skin. Int J Cosmet Sci 25(4):157–167PubMedCrossRefGoogle Scholar
  147. 147.
    Hadgraft J, Lane ME (2009) Transepidermal water loss and skin site: a hypothesis. Int J Pharm 373(1–2):1–3PubMedCrossRefGoogle Scholar
  148. 148.
    Machado M, Hadgraft J, Lane ME (2010) Assessment of the variation of skin barrier function with anatomic site, age, gender and ethnicity. Int J Cosmet Sci 32:397–409Google Scholar
  149. 149.
    Proksch E (2008) Protection against dryness of facial skin: a rational approach. Skin Pharmacol Physiol 22(1):3–7PubMedCrossRefGoogle Scholar
  150. 150.
    Van Overloop L, Declercq L, Maes D (2001) Visual scaliness of human skin correlates to decreased ceramide levels and decreased stratum corneum protease activity. J Dermatol 117(3):811Google Scholar
  151. 151.
    Nina M et al (2009) Dichotomous effect of ultraviolet B on the expression of corneodesmosomal enzymes in human epidermal keratinocytes. J Dermatol Sci 54(1):17–24CrossRefGoogle Scholar
  152. 152.
    Kitamura K (2002) Advances in dry skin care technology extend beyond the category of cosmetic products. IFSCC Mag 5(3):177–187Google Scholar
  153. 153.
    Kawai E et al (2002) Can inorganic powders provide any biological benefit in stratum corneum, while residing on skin surface. IFSCC Mag 5(4):269–275Google Scholar
  154. 154.
    Suzuki Y et al (1996) The role of two endogenous proteases of the stratum corneum in degradation of desmoglein-1 and their reduced activity in the skin of ichthyotic patients. Br J Dermatol 134(3):460–464PubMedCrossRefGoogle Scholar
  155. 155.
    Bowcock AM, Krueger JG (2005) Getting under the skin: the immunogenetics of psoriasis. Nat Rev Immunol 5(9):699–711PubMedCrossRefGoogle Scholar
  156. 156.
    Ekholm E, Egelrud T (1999) Stratum corneum chymotryptic enzyme in psoriasis. Arch Dermatol Res 291(4):195–200PubMedCrossRefGoogle Scholar
  157. 157.
    Vasilopoulos Y et al (2004) Genetic association between an AACC insertion in the 3′UTR of the stratum corneum chymotryptic enzyme gene and atopic dermatitis. J Invest Dermatol 123(1):62–66PubMedCrossRefGoogle Scholar
  158. 158.
    Rawlings AV, Matts PJ (2005) Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol 124(6):1099–1110PubMedCrossRefGoogle Scholar
  159. 159.
    Choi MJ, Maibach HI (2005) Role of ceramides in barrier function of healthy and diseased skin. Am J Clin Dermatol 6(4):215–223PubMedCrossRefGoogle Scholar
  160. 160.
    Holleran WM, Takagi Y, Uchida Y (2006) Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett 580(23):5456–5466PubMedCrossRefGoogle Scholar
  161. 161.
    Redoules D et al (1999) Characterisation and assay of five enzymatic activities in the stratum corneum using tape-strippings. Skin Pharmacol Appl Skin Physiol 12(4):182–192PubMedGoogle Scholar
  162. 162.
    Tarroux R et al (2002) Variability of enzyme markers during clinical regression of atopic dermatitis. Skin Pharmacol Appl Skin Physiol 15:55–62PubMedGoogle Scholar
  163. 163.
    Voegeli R et al (2011) Increased mass levels of serine proteases in the stratum corneum in acute eczematous atopic skin. Int J Cosmet Sci 33(6):560–565PubMedCrossRefGoogle Scholar
  164. 164.
    Kalia YN et al (2001) Assessment of topical bioavailability in vivo: the importance of stratum corneum thickness. Skin Pharmacol Appl Skin Physiol 14(suppl 1):82–86PubMedGoogle Scholar
  165. 165.
    Roedl D et al (2009) Serine protease inhibitor lymphoepithelial Kazal type-related inhibitor tends to be decreased in atopic dermatitis. J Eur Acad Dermatol Venereol 23(11):1263–1266PubMedCrossRefGoogle Scholar
  166. 166.
    Descargues P et al (2006) Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsin-like hyperactivity in Netherton syndrome. J Invest Dermatol 126(7):1622–1632PubMedCrossRefGoogle Scholar
  167. 167.
    Kikuchi K et al (2006) Impairment of skin barrier function is not inherent in atopic dermatitis patients: a prospective study conducted in newborns. Pediatr Dermatol 23(2):109–113PubMedCrossRefGoogle Scholar
  168. 168.
    Cork MJ et al (2006) Interaction of topical corticosteroids and pimecrolimus with the skin barrier: Implications for efficacy and safety of treatment for atopic dermatitis. J Am Acad Dermatol 54(suppl S):AB3 P10Google Scholar
  169. 169.
    Sugarman JL (2008) The epidermal barrier in atopic dermatitis. Semin Cutan Med Surg 27(2):108–114PubMedCrossRefGoogle Scholar
  170. 170.
    Rawlings AV (2009) 50 years of stratum corneum and moisturization research. IFSCC Mag 12(3):169–172Google Scholar
  171. 171.
    Jonca N et al (2009) Corneodesmosomal Proteins. In: Rawlings AV, Leyden JJ (eds) Skin moisturization. Informa Healthcare, New York, pp 99–123CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.DSM Nutritional Products Ltd.BaselSwitzerland
  2. 2.AVR Consulting Ltd.Northwich CheshireUK

Personalised recommendations