Advertisement

Peptides Modulating Development of Specialized Cells

  • Lee Hunt
  • Julie E. GrayEmail author
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 16)

Abstract

Pairs of specialized guard cells on the leaf surface of higher plants form stomatal pores that control water release and carbon dioxide entry. The patterning of stomata is precisely controlled during leaf development to ensure the correct cellular spacing within the epidermis. The EPIDERMAL PATTERNING FACTOR (EPF) family of small secreted cysteine-rich peptides is important in this cell-to-cell signaling process as the EPF-like peptides can act as either positive or negative regulators of stomatal development. The properties of the EPF-like peptides and how they may interact with putative receptor components, such as TOO MANY MOUTHS (TMM) and ERECTA family proteins, and compete to activate or inactivate the downstream kinase cascade are discussed.

Keywords

Guard Cell Stomatal Density Peptide Ligand Asymmetric Division Pavement Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrash E, Bergmann DC (2010) Regional specification of stomatal production by the putative ligand CHALLAH. Development 137:447–455PubMedCrossRefGoogle Scholar
  2. Berger D, Altmann T (2000) A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev 14:1119–1131PubMedGoogle Scholar
  3. Bergmann DC, Sack F (2007) Stomatal development. Annu Rev Plant Biol 58:163–181PubMedCrossRefGoogle Scholar
  4. Bergmann DC, Lukowitz W, Somerville CR (2004) Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494–1497PubMedCrossRefGoogle Scholar
  5. Casson S, Gray JE (2008) Influence of environmental factors on stomatal development. New Phytol 178:9–23PubMedCrossRefGoogle Scholar
  6. Dong J, MacAlister CA, Bergmann DC (2009) BASL controls asymmetric cell division in Arabidopsis. Cell 137:1320–1330PubMedCrossRefGoogle Scholar
  7. Duckert P, Brunak S, Blom N (2004) Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel 17:107–112PubMedCrossRefGoogle Scholar
  8. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914PubMedCrossRefGoogle Scholar
  9. Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T (2007) The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 21:1720–1725PubMedCrossRefGoogle Scholar
  10. Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T (2009) Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol 50:1019–1031PubMedCrossRefGoogle Scholar
  11. Hunt L, Gray JE (2009) The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Curr Biol 19:864–869PubMedCrossRefGoogle Scholar
  12. Hunt L, Bailey KJ, Gray JE (2010) The signaling peptide EPFL9 is a positive regulator of stomatal development. New Phytol 186:609–614PubMedCrossRefGoogle Scholar
  13. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845PubMedCrossRefGoogle Scholar
  14. Jeong S, Trotochaud AE, Clark SE (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925–1934PubMedGoogle Scholar
  15. Jun J, Fiume E, Roeder AH, Meng L, Sharma VK, Osmont KS, Baker C, Ha CM, Meyerowitz EM, Feldman LJ, Fletcher JC (2010) Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiol 154:1721–1736PubMedCrossRefGoogle Scholar
  16. Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591PubMedCrossRefGoogle Scholar
  17. Kondo T, Kajita R, Miyazaki A, Hokoyama M, Nakamura-Miura T, Mizuno S, Masuda Y, Irie K, Tanaka Y, Takada S, Kakimoto T, Sakagami Y (2010) Stomatal density is controlled by a mesophyll-derived signaling molecule. Plant Cell Physiol 51:1–8PubMedCrossRefGoogle Scholar
  18. Lampard GR, Macalister CA, Bergmann DC (2008) Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science 322:1113–1116PubMedCrossRefGoogle Scholar
  19. Müller R, Bleckmann A, Simon R (2008) The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20:934–946PubMedCrossRefGoogle Scholar
  20. Nadeau JA, Sack FD (2002) Control of stomatal distribution on the Arabidopsis leaf surface. Science 296:1697–1700PubMedCrossRefGoogle Scholar
  21. Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294PubMedCrossRefGoogle Scholar
  22. Peterson KM, Rychel AL, Torii KU (2010) Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development. Plant Cell 222:296–306Google Scholar
  23. Rychel AL, Peterson KM, Torii KU (2010) Plant twitter: ligands under 140 amino acids enforcing stomatal patterning. J Plant Res 123:275–280PubMedCrossRefGoogle Scholar
  24. Seidah NG, Chrétien M (1997) Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Biotechnol 8:602–607PubMedCrossRefGoogle Scholar
  25. Serna L, Fenoll C (2000) Stomatal development in Arabidopsis: how to make a functional pattern. Trends Plant Sci 5:458–460PubMedCrossRefGoogle Scholar
  26. Shiu SH, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 2001(113):re22PubMedCrossRefGoogle Scholar
  27. Shpak ED, McAbee JM, Pillitteri LJ, Torii KU (2005) Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309:290–293PubMedCrossRefGoogle Scholar
  28. Srivastava R, Liu JX, Howell SH (2008) Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis. Plant J 56:219–227PubMedCrossRefGoogle Scholar
  29. Srivastava R, Liu JX, Guo H, Yin Y, Howell SH (2009) Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant J 59:930–939PubMedCrossRefGoogle Scholar
  30. Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I (2010) Stomagen positively regulates stomatal density in Arabidopsis. Nature 463:241–244PubMedCrossRefGoogle Scholar
  31. Von Groll U, Berger D, Altmann T (2002) The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. Plant Cell 14:1527–1539CrossRefGoogle Scholar
  32. Yang M, Sack FD (1995) The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7:2227–2239PubMedGoogle Scholar
  33. Zhu Y, Wang Y, Li R, Song X, Wang Q, Huang S, Jin JB, Liu CM, Lin J (2010) Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J 61:223–233PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK

Personalised recommendations