Peptides Regulating Plant Vascular Development

  • Hiroo Fukuda
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 16)


Cell-to-cell communication is a fundamental mechanism for maintaining homeostasis of the plant meristems. Cellular proliferation and differentiation in the vascular meristem are regulated by hormonal signals and secreted peptides. Recent studies have highlighted the importance of an intercellular signaling pathway consisting of a CLE peptide TDIF and its receptor PXY/TDR (PHLOEM INTERCALATED WITH XYLEM/TDIF receptor) in determining the fates of procambial cells (vascular stem cells), namely self-renewal or commitment to differentiation. The comparison of the TDIF TDR signaling pathways with the CLAVATA pathways revealed common and distinct features of homeostasis between these two meristems. Some other CLE peptides are recently found to function in xylem development via modification of plant hormone signaling. Here, emerging concepts of how intercellular peptide signals regulate vascular cell communities in global geometry are summarized.


Shoot Apical Meristem Vascular Development Stem Cell Maintenance Cytokinin Signaling Procambial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank S. Betsuyaku for critical reading of this manuscript. This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan (19060 009), from the Japan Society for the Promotion of Science (23227001), and from Bio-oriented Technology Research Advancement Institution (BRAIN).


  1. Agusti J, Lichtenberger R, Schwarz M, Nehlin L, Greb T (2011) Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLoS Genet 7:e1001312PubMedCrossRefGoogle Scholar
  2. Batut J, Mergaert P, Masson-Boivin C (2011) Peptide signalling in the rhizobium-legume symbiosis. Curr Opin Microbiol 14:181–187PubMedCrossRefGoogle Scholar
  3. Bleckmann A, Weidtkamp-Peters S, Seidel CA, Simon R (2010) Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol 152:166–176PubMedCrossRefGoogle Scholar
  4. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619PubMedCrossRefGoogle Scholar
  5. Brand U, Grünewald M, Hobe M, Simon R (2002) Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol 129:565–575PubMedCrossRefGoogle Scholar
  6. Casson SA, Chilley PM, Topping JF, Evans IM, Souter MA, Lindsey K (2002) The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 14:1705–1721PubMedCrossRefGoogle Scholar
  7. Chilley PM, Casson SA, Tarkowski P, Hawkins N, Wang KLC, Hussey PJ, Beale M, Ecker JR, Sandberg GK, Lindsey K (2006) The POLARIS peptide of Arabidopsis regulates auxin transport and root growth via effects on ethylene signaling. Plant Cell 18:3058–3072PubMedCrossRefGoogle Scholar
  8. Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585PubMedCrossRefGoogle Scholar
  9. DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE (2006) The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J 45:1–16PubMedCrossRefGoogle Scholar
  10. Etchells JP, Turner SR (2010) The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137:767–774PubMedCrossRefGoogle Scholar
  11. Fiers M, Hause G, Boutilier K, Martinez EC, Wejers D, Offringa R, van der Geest L, van Lookren CM, Liu CM (2004) Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem. Gene 327:37–49PubMedCrossRefGoogle Scholar
  12. Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17:1061–1066PubMedCrossRefGoogle Scholar
  13. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914PubMedCrossRefGoogle Scholar
  14. Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391PubMedCrossRefGoogle Scholar
  15. Fukuda H, Komamine A (1980) Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65:57–60PubMedCrossRefGoogle Scholar
  16. Fukuda H, Hirakawa Y, Sawa S (2007) Peptide signaling in vascular development. Curr Opin Plant Biol 10:477–482PubMedCrossRefGoogle Scholar
  17. Haecker A, Laux T (2001) Cell-cell signaling in the shoot meristem. Curr Opin Plant Biol 4:441–446PubMedCrossRefGoogle Scholar
  18. Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668PubMedCrossRefGoogle Scholar
  19. Hejátko J, Ryu H, Kim GT, Dobesová R, Choi S, Choi SM, Choi SM, Soucek P, Horák J, Pekárová B, Palme K, Brzobohaty B, Hwang I (2009) The histidine kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 regulate vascular tissue development in Arabidopsis shoots. Plant Cell 21:2008–2021PubMedCrossRefGoogle Scholar
  20. Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008) Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci U S A 105:15208–15213PubMedCrossRefGoogle Scholar
  21. Hirakawa Y, Kondo Y, Fukuda H (2010a) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22:2618–2629PubMedCrossRefGoogle Scholar
  22. Hirakawa Y, Kondo Y, Fukuda H (2010b) Regulation of vascular development by CLE peptide-receptor systems. J Integr Plant Biol 52:8–16PubMedCrossRefGoogle Scholar
  23. Hirakawa Y, Kondo Y, Fukuda H (2011) Establishment and maintenance of vascular cell communities through local signaling. Curr Opin Plant Biol 14:17–23PubMedCrossRefGoogle Scholar
  24. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845PubMedCrossRefGoogle Scholar
  25. Jeong S, Trotochaud AE, Clark SE (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925–1934PubMedGoogle Scholar
  26. Jun JH, Fiume E, Fletcher JC (2008) The CLE family of plant polypeptide signaling molecules. Cell Mol Life Sci 65:743–755PubMedCrossRefGoogle Scholar
  27. Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:868–874PubMedCrossRefGoogle Scholar
  28. Kinoshita A, Nakamura Y, Sasaki E, Kyozuka J, Fukuda H, Sawa S (2007) Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol 48:1821–1825PubMedCrossRefGoogle Scholar
  29. Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, Simon R, Yamaguchi-Shinozaki K, Fukuda H, Sawa S (2010) RPK2/TOAD2 is an essential receptor-like kinase transmitting the CLV3 signal in Arabidopsis. Development 137:3911–3920PubMedCrossRefGoogle Scholar
  30. Kobayashi Y, Motose H, Iwamoto K, Fukuda H (2011) Expression and genome-wide analysis of xylogen-type gene family. Plant Cell Physiol 52:1095–1106PubMedCrossRefGoogle Scholar
  31. Komori R, Amano Y, Ogawa-Ohnishi M, Matsubayashi Y (2009) Identification of tyrosylprotein sulfotransferase in Arabidopsis. Proc Natl Acad Sci U S A 106:15067–15072PubMedCrossRefGoogle Scholar
  32. Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by CLV3 identified by in situ MALDI TOF-MS analysis. Science 313:845–848PubMedCrossRefGoogle Scholar
  33. Kondo Y, Hirakawa Y, Fukuda H (2011) CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling. Plant Cell Physiol 52:37–48PubMedCrossRefGoogle Scholar
  34. Kouchi H, Takane K, So RB, Ladha JK, Reddy PM (1999) Rice ENOD40: isolation and expression analysis in rice and transgenic soybean root nodules. Plant J 18:121–129PubMedCrossRefGoogle Scholar
  35. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860PubMedCrossRefGoogle Scholar
  36. Kumagai H, Kinoshita E, Ridge RW, Kouchi H (2006) RNAi knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus. Plant Cell Physiol 47:1102–1111PubMedCrossRefGoogle Scholar
  37. Lehesranta SJ, Lichtenberger R, Helariutta Y (2010) Cell-to-cell communication in vascular morphogenesis. Curr Opin Plant Biol 13:59–65PubMedCrossRefGoogle Scholar
  38. Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M et al (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175PubMedCrossRefGoogle Scholar
  39. Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98PubMedCrossRefGoogle Scholar
  40. Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci U S A 93:7623–7627PubMedCrossRefGoogle Scholar
  41. Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu Rev Plant Biol 57:649–674PubMedCrossRefGoogle Scholar
  42. Matsubayashi Y, Takagi L, Omura N, Morita A, Sakagami Y (1999) The endogenous sulfated pentapeptide phytosulfokine-alpha stimulates tracheary element differentiation of isolated mesophyll cells of zinnia. Plant Physiol 120:1043–1048PubMedCrossRefGoogle Scholar
  43. Matsubayashi Y, Ogawa M, Morita A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470–1472PubMedCrossRefGoogle Scholar
  44. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci U S A 105:20027–20031PubMedCrossRefGoogle Scholar
  45. Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815PubMedCrossRefGoogle Scholar
  46. Miwa H, Betsuyaku S, Iwamoto K, Kinoshita A, Fukuda H, Sawa S (2008) The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis. Plant Cell Physiol 49:1752–1757PubMedCrossRefGoogle Scholar
  47. Motose H, Fukuda H, Sugiyama M (2001a) Involvement of local intercellular communication in the differentiation of zinnia mesophyll cells into tracheary elements. Planta 213:121–131PubMedCrossRefGoogle Scholar
  48. Motose H, Sugiyama M, Fukuda H (2001b) An arabinogalactan protein(s) is a key component of a fraction that mediates local intercellular communication involved in tracheary element differentiation of zinnia mesophyll cells. Plant Cell Physiol 42:129–137PubMedCrossRefGoogle Scholar
  49. Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878PubMedCrossRefGoogle Scholar
  50. Motose H, Iwamoto K, Endo S, Demura T, Sakagami Y, Matsubayashi Y, Moore KL, Fukuda H (2009) Involvement of phytosulfokine in the attenuation of stress response during the transdifferentiation of Zinnia mesophyll cells into tracheary elements. Plant Physiol 150:437–447PubMedCrossRefGoogle Scholar
  51. Müller R, Borghi L, Kwiatkowska D, Laufs P, Simon R (2006) Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell 18:1188–1198PubMedCrossRefGoogle Scholar
  52. Müller R, Bleckmann A, Simon R (2008) The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20:934–946PubMedCrossRefGoogle Scholar
  53. Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tähtiharju S, Elo A, Decourteix M, Ljung K, Bhalerao R, Keinonen K, Albert VA, Helariutta Y (2008) Cytokinin signaling regulates cambial development in poplar. Proc Natl Acad Sci U S A 105:20032–20037PubMedCrossRefGoogle Scholar
  54. Ohashi-Ito K, Oda Y, Fukuda H (2010) Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates genes that govern programmed cell death and secondary wall formation in a coordinated way during xylem differentiation. Plant Cell 22:3461–3473PubMedCrossRefGoogle Scholar
  55. Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5:578–580PubMedCrossRefGoogle Scholar
  56. Sakaguchi J, Itoh JI, Ito Y, Nakamura A, Fukuda H, Sawa S (2010) COE1, an LRR-RLK responsible for commissural vein pattern formation in rice. Plant J 63:405–416CrossRefGoogle Scholar
  57. Scheres B (2007) Stem-cell niches: nursery rhymes across kingdoms. Nat Rev Mol Cell Biol 8:345–354PubMedCrossRefGoogle Scholar
  58. Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644PubMedCrossRefGoogle Scholar
  59. Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98:10763–10768PubMedCrossRefGoogle Scholar
  60. Stahl Y, Simon R (2005) Plant stem cell niches. Int J Dev Biol 49:479–489PubMedCrossRefGoogle Scholar
  61. To JP, Haberer G, Ferreira FJ, Deruère J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16:658–671PubMedCrossRefGoogle Scholar
  62. To JP, Deruère J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2007) Cytokinin regulates type-A Arabidopsis Response Regulator activity and protein stability via two-component phosphorelay. Plant Cell 19:3901–3914PubMedCrossRefGoogle Scholar
  63. Vleghels I, Hontelez J, Ribeiro A, Fransz P, Bisseling T, Franssen H (2003) Expression of ENOD40 during tomato plant development. Planta 218:42–49PubMedCrossRefGoogle Scholar
  64. Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P (2008) Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci U S A 105:18625–18630PubMedCrossRefGoogle Scholar
  65. Zhao Y, Hu Y, Dai M, Huang L, Zhou DX (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21:736–748PubMedCrossRefGoogle Scholar
  66. Zhu Y, Wang Y, Li R, Song X, Wang Q, Huang S, Jin JB, Liu C-M, Lin J (2010) Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J 61:223–233PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations