Advertisement

Methods to Identify New Partners of Plant Signaling Peptides

  • Melinka A. Butenko
  • Markus Albert
  • Reidunn B. Aalen
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 16)

Abstract

Over the last decade, there has been an increasing awareness of the importance of cell-to-cell communication in plants by peptide ligands and membrane-bound receptors due to striking aberrant phenotypes caused by synthetic peptides, overexpression of peptides, or mutations in peptide or receptor genes. The number of experimentally confirmed peptide-receptor signaling modules represents only a tiny fraction of the number of genes encoding putative ligands and receptors in Arabidopsis thaliana. Thus, a major challenge in plant biology is to identify new partners of plant signaling peptides. Here we present an overview of methods and prerequisites for ligand–receptor matchmaking with examples from current literature.

Keywords

Shoot Apical Meristem Peptide Ligand Abscission Zone Receptor Pair Putative Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albert M, Jehle AK, Lipschis M, Mueller K, Zeng Y, Felix G (2010) Regulation of cell behaviour by plant receptor kinases: pattern recognition receptors as prototypical models. Eur J Cell Biol 89:200–207PubMedCrossRefGoogle Scholar
  2. Bauer Z, Gomez-Gomez L, Boller T, Felix G (2001) Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. J Biol Chem 276:45669–45676PubMedCrossRefGoogle Scholar
  3. Brand L, Horler M, Nuesch E, Vassalli S, Barrell P, Yang W, Jefferson RA, Grossniklaus U, Curtis MD (2006) A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol 141:1194–1204PubMedCrossRefGoogle Scholar
  4. Butenko MA, Aalen RB (2011) Receptor ligands in development. In: Kemmerling B, Tax F (eds) Receptor-like kinases in plants: from development to defense. Springer, BerlinGoogle Scholar
  5. Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS, Mandal A, Aalen RB (2003) INFLORESCENCE DEFICIENT IN ABSCISSION controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15:2296–2307PubMedCrossRefGoogle Scholar
  6. Butenko MA, Vie AK, Brembu T, Aalen RB, Bones AM (2009) Plant peptides in signalling: looking for new partners. Trends Plant Sci 14:255–263PubMedCrossRefGoogle Scholar
  7. Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476PubMedCrossRefGoogle Scholar
  8. Cho SK, Larue CT, Chevalier D, Wang H, Jinn TL, Zhang S, Walker JC (2008) Regulation of floral organ abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:15629–15634PubMedCrossRefGoogle Scholar
  9. Clark SE, Running MP, Meyerowitz EM (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057–2067Google Scholar
  10. De Smet I, Voss U, Jurgens G, Beeckman T (2009) Receptor-like kinases shape the plant. Nat Cell Biol 11:1166–1173PubMedCrossRefGoogle Scholar
  11. Doke N (1983) Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol Plant Pathol 23:359–367CrossRefGoogle Scholar
  12. Dorman G, Prestwich GD (1994) Benzophenone photophores in biochemistry. Biochemistry 33:5661–5673PubMedCrossRefGoogle Scholar
  13. Felix G, Boller T (1995) Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. Plant J 7:381–389CrossRefGoogle Scholar
  14. Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, Stiekema W, Liu CM (2005) The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell 17:2542–2553PubMedCrossRefGoogle Scholar
  15. Fletcher JC, Meyerowitz EM (2000) Cell signaling within the shoot meristem. Curr Opin Plant Biol 3:23–30PubMedCrossRefGoogle Scholar
  16. Gomez-Gomez L, Bauer Z, Boller T (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13:1155–1163PubMedGoogle Scholar
  17. Goto H, Okuda S, Mizukami A, Mori H, Sasaki N, Kurihara D, Higashiyama T (2011) Chemical visualization of an attractant peptide, LURE. Plant Cell Physiol 52:49–58PubMedCrossRefGoogle Scholar
  18. Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777PubMedCrossRefGoogle Scholar
  19. Guo YF, Han LQ, Hymes M, Denver R, Clark SE (2010) CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J 63:889–900PubMedCrossRefGoogle Scholar
  20. Hanania U, Avni A (1997) High-affinity binding site for ethylene-inducing xylanase elicitor on Nicotiana tabacum membranes. Plant J 12:113–120CrossRefGoogle Scholar
  21. Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T (2009) Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol 50:1019–1031PubMedCrossRefGoogle Scholar
  22. Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008) Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA 105:15208–15213PubMedCrossRefGoogle Scholar
  23. Hunt L, Gray JE (2009) The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Curr Biol 19:864–869PubMedCrossRefGoogle Scholar
  24. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845PubMedCrossRefGoogle Scholar
  25. Jia G, Liu X, Owen HA, Zhao D (2008) Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proc Natl Acad Sci USA 105:2220–2225PubMedCrossRefGoogle Scholar
  26. Joss UR, Towbin H (1994) Acridinium ester labelled cytokines: receptor binding studies with human interleukin-1 alpha, interleukin-1 beta and interferon-gamma. J Biolumin Chemilumin 9:21–28PubMedCrossRefGoogle Scholar
  27. Kayes JM, Clark SE (1998) CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125:3843–3851PubMedGoogle Scholar
  28. Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, Simon R, Yamaguchi-Shinozaki K, Fukuda H, Sawa S (2010) RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development 137:3911–3920PubMedCrossRefGoogle Scholar
  29. Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313:845–848PubMedCrossRefGoogle Scholar
  30. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507PubMedCrossRefGoogle Scholar
  31. Lee H, Chah OK, Sheen J (2011). Stem-cell-triggered immunity through CLV3p-FLS2 signalling. Nature 473:376–379.PubMedCrossRefGoogle Scholar
  32. Lease KA, Walker JC (2006) The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol 142:831–838PubMedCrossRefGoogle Scholar
  33. Lenhard M, Laux T (2003) Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130:3163–3173PubMedCrossRefGoogle Scholar
  34. Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci USA 93:7623–7627PubMedCrossRefGoogle Scholar
  35. Matsubayashi Y, Ogawa M, Morita A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470–1472PubMedCrossRefGoogle Scholar
  36. Mayers GL, Klostergaard J (1983) The use of protein A in solid-phase binding assays: a comparison of four radioiodination techniques. J Immunol Methods 57:235–246PubMedCrossRefGoogle Scholar
  37. Meng L, Ruth KC, Fletcher JC, Feldman L (2010) The roles of different CLE domains in Arabidopsis CLE polypeptide activity and functional specificity. Mol Plant 3:760–772PubMedCrossRefGoogle Scholar
  38. Miwa H, Betsuyaku S, Iwamoto K, Kinoshita A, Fukuda H, Sawa S (2008) The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis. Plant Cell Physiol 49:1752–1757PubMedCrossRefGoogle Scholar
  39. Muller R, Bleckmann A, Simon R (2008) The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20:934–946PubMedCrossRefGoogle Scholar
  40. Nürnberger T, Nennstiel D, Hahlbrock K, Scheel D (1995) Covalent cross-linking of the Phytophthora megasperma oligopeptide elicitor to its receptor in parsley membranes. Proc Natl Acad Sci USA 92:2338–2342PubMedCrossRefGoogle Scholar
  41. Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294PubMedCrossRefGoogle Scholar
  42. Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5:578–580PubMedCrossRefGoogle Scholar
  43. Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–897PubMedCrossRefGoogle Scholar
  44. Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644PubMedCrossRefGoogle Scholar
  45. Sharma VK, Ramirez J, Fletcher JC (2003) The Arabidopsis CLV3-like (CLE) genes are expressed in diverse tissues and encode secreted proteins. Plant Mol Biol 51:415–425PubMedCrossRefGoogle Scholar
  46. Shinohara H, Matsubayashi Y (2007) Functional immobilization of plant receptor-like kinase onto microbeads towards receptor array construction and receptor-based ligand fishing. Plant J 52:175–184PubMedCrossRefGoogle Scholar
  47. Shinohara H, Ogawa M, Sakagami Y, Matsubayashi Y (2007) Identification of ligand binding site of phytosulfokine receptor by on-column photoaffinity labeling. J Biol Chem 282:124–131PubMedCrossRefGoogle Scholar
  48. Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768PubMedCrossRefGoogle Scholar
  49. Stenvik G-E, Butenko MA, Urbanowicz BR, Rose JK, Aalen RB (2006) Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis. Plant Cell 18:1467–1476PubMedCrossRefGoogle Scholar
  50. Stenvik G-E, Tandstad NM, Guo Y, Shi C-L, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA (2008) The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20:1805–1817PubMedCrossRefGoogle Scholar
  51. Tang W, Ezcurra I, Muschietti J, McCormick S (2002) A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 14:2277–2287PubMedCrossRefGoogle Scholar
  52. Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE (1999) The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11:393–406PubMedGoogle Scholar
  53. Yamaguchi Y, Pearce G, Ryan CA (2006) The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci USA 103:10104–10109PubMedCrossRefGoogle Scholar
  54. Yang S-L, Xie L-F, Mao H-Z, Puah CS, Yang W-C, Jiang L, Sundaresan V, Ye D (2003) TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15:2792–2804PubMedCrossRefGoogle Scholar
  55. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Melinka A. Butenko
    • 1
  • Markus Albert
    • 2
  • Reidunn B. Aalen
    • 1
  1. 1.Department of Molecular BiosciencesUniversity of OsloOsloNorway
  2. 2.Center for Plant Molecular BiologyUniversity of TübingenTübingenGermany

Personalised recommendations